General Task Publications

Task 53 Highlights 2018
Task 53 Highlights 2018
February 2019 - PDF 0.31MB
Publisher: Task 53

A tremendous increase in the market for air-conditioning can be observed worldwide especially in developing countries. The results of the past IEA SHC Tasks and work on solar cooling in SHC Task 38: Solar Air-Conditioning and Refrigeration show the large potential of this technology for building air-conditioning, particularly in sunny regions. However, solar thermal cooling faces barriers to emerge as an economically competitive solution. Thus there is a strong need to stimulate the solar cooling sector for small and medium sized systems.

Solar Heating and Cooling & Solar Air-Conditioning Position Paper
Solar Heating and Cooling & Solar Air-Conditioning Position Paper
November 2018 - PDF 0.13MB
By: Daniel Neyer, Daniel Mugnier

The purpose of this paper is to provide relevant information to energy policymakers so that they can understand why and how solar cooling and air-conditioning (SAC) systems should be supported and promoted. It presents state of the art solar thermal and photovoltaic supported solar heating and cooling systems. In addition, it provides a comprehensive summary of the main findings as provided by the IEA SHC Task 53 work .

The Solar Cooling Design Guide: Case Studies of Successful Solar Air Conditioning Design
The Solar Cooling Design Guide: Case Studies of Successful Solar Air Conditioning Design
December 2017
Editor: Daniel Mugnier, Daniel Neyer, Stephen D. White
Publisher: Wiley
Order - $95.00 USD
Solar cooling systems can be a cost-effective and environmentally attractive air-conditioning solution. The design of such systems, however, is complex. Research carried out under the aegis of the International Energy Agency's Solar Heating and Cooling Program has shown that there is a range of seemingly subtle design decisions that can impact significantly on the performance of solar cooling systems. In order to reduce the risk of errors in the design process, this guide provides detailed and very specific engineering design information. It focuses on case study examples of installed plants that have been monitored and evaluated over the last decade. For three successful plants the design process is described in detail and the rationale for each key design decision is explained. Numerical constraints are suggested for the sizing / selection parameters of key equipment items. Moreover, the application conditions under which the system selection is appropriate are discussed. By following The Guide for any of the three specific solar cooling systems, the designer can expect to reliably achieve a robust, energy-saving solution. This book is intended as a companion to the IEA Solar Cooling Handbook which provides a general overview of the various technologies as well as comprehensive advice to enable engineers to design their own solar cooling system from first principles.