

Five satellite products deriving beam and global irradiance validation on data from 23 ground stations

Pierre Ineichen University of Geneva February 2011

Five satellite products deriving beam and global irradiance validation on data from 23 ground stations

Pierre Ineichen University of Geneva February 2011

Abstract

Models converting satellite images into the different radiation components become increasingly performing and give often better estimation of the solar irradiance availability than ground measurements if the station is not situated in the near vicinity of the application.

Five different satellite products deriving both global and beam irradiance are validated against data from 23 ground sites. The main conclusions are:

- the global irradiance is retrieved with a negligible bias and an average standard deviation around 16% for the best algorithm. For the beam irradiance, the bias is around several percents, and the standard deviation around 35%,
- the main deviation comes from the knowledge of the aerosol optical depth,
- the high latitude sites give not poorer results than the other sites,

The interannual variability of the irradiance conditions, the lack of independent ground measurements such as aerosol data, the difficulty to assess the exact calibration of the ground data, and the choice of a specific year to carry out the validation, conduct to results that give good indications, but from which it is difficult to draw general conclusions.

1. Introduction

Models converting satellite images into the different radiation components become increasingly performing and give often better estimation of the solar irradiance availability than ground measurements if the station is not situated in the near vicinity of the application (Zelenka, 1999). If the global irradiance can be derived with a good accuracy, it is more difficult for the beam component and the dispersion of the models is higher.

The aim of the present study is to validate and compare five different products deriving the global and beam irradiance components from meteorological satellite images. It is a complement to a previous study conducted by the author (Ineichen 2009) on products from Eumetsat Satellite Application Facilities (SAF). These algorithmes are derived by GeoModel in Bratislava (SolarGis), Helioclim Soda (heliosat 3v3), 3Tier company in the United States, University of Oldenburg (EnMetSol-Solis and EnMetSol-Dumortier) and the IrSolAv company in Spain.

2. Ground data

The ground data used in the study are acquired at stations part of networks such as Baseline Solar Radiation Network (BSRN), Commission International de l'Eclairage (CIE), FluxNet network, Swiss Institute of Meteorology (ISM-Anetz) and World Radiation Data Center (WRDC). Data from 23 ground sites situated mainly on the European continent are used. The work is done on data covering the year 2006.

Beside the global horizontal irradiance G_h , half of the sites acquire the normal beam irradiance B_n . High precision instruments (WMO 2008) such as Kipp and Zonen CM10

Station	Country	Climate	D.	в	latitudo º	longitude °	altitudo m	operated by
51811011	Country	Cililiate	Dh	Dn	latitude	longitude	annuaem	operated by
Cabauw	The Netehrlands	temperate maritime		х	51.970	4.930	2	BSRN - KNMI
Camborne	United Kingdom	temperate maritime		х	50.220	-5.310	88	BSRN - Met Office
Carpentras	France	mediterranean		х	44.080	5.060	100	BSRN - Météo France
Davos Dorf	Switzerland	semi-continental alpin		х	46.810	9.840	1610	WRDC - Met Office
El Saler	Spain	semi arid, warm summer			39.346	-0.319	10	FluxNet
Geneva	Switzerland	semi-continental		х	46.199	6.131	420	CIE - UNIGE
Jungfraujoch	Switzerland	high alpine		х	46.550	7.980	3571	CLIMAP - Météo Suisse
Las Majadas	Spain	semi arid, warm summer			39.942	-5.773	260	FluxNet
Lerwick	United Kingdom	cold oceanic		х	60.130	-1.180	82	BSRN - Met Office
Locarno	Switzerland	warm temperate, humid			46.170	8.780	367	ANETZ - Météo Suisse
Nantes	France	oceanic	х		47.150	-1.330	30	CIE - CSTB
Payerne	Switzerland	moderate maritime/continental		х	46.820	6.950	490	BSRN - Météo Suisse
Sede Boger	Israel	dry steppe			30.867	34.767	457	BSRN - Met Office
Sion	Switzerland	dry alpine			46.220	7.330	489	ANETZ - Météo Suisse
Sonnblick	Austria	temperate alpine	х		47.050	12.950	3105	WRDC - ZAMG
Tamanrasset	Algeria	hot, dry desert			22.780	5.520	1400	BSRN - Met Office
Thessaloniki	Greece	mediterranean temperate		х	40.630	22.970	60	WRDC - Met Office
Toravere	Estonia	cold humid		х	58.270	26.470	70	BSRN - EMHI
Val Alinya	Spain	warm temperate, humid			42.152	1.449	1770	FluxNet
Vaulx-en-Velin	France	semi-continental	х		45.780	4.930	170	CIE - ENTPE
Wien / Hohe Warte	Austria	continental	х		48.250	16.350	203	WRDC - ZAMG
Yatir Forest	Israel	hot arid			31.347	35.052	650	FluxNet
Zürich	Switzerland	temperate atlantic			47.475	8.530	558	ANETZ - Météo Suisse

ANETZ	MeteoSwiss network	CUEPE	Energy Group, UniGe
BSRN	Baseline Surface Radiation Network	EHMI	The Estonian Meteorological and Hydrological Institute
CIE	Commission Internationale pour l'Eclairage	ENTPE	Ecole Nationale des Mines de Paris
CLIMAP	MeteoSwiss Climate Maping application	KNMI	The Netherlands Institute of Meteorology
CSTB	Centre Scientifique et Technique du Bâtiment	UNIGE	University of Geneva
		ZAMG	Zentralanstalt für Meteorologie und Geophysik/Geodynamik

Table IList of the stations, data and parameters availability.

and Eppley PSP pyranometers, and Eppley NIP pyrheliometers, are used to acquire the data. A stringent calibration, characterization and quality control was applied on all the data by the person in charge of the measurements, the coherence of the data for all the stations was verified by the author and is described in the following section. For two sites, the aerosol optical depth *aod* and the water vapor column *w* is independently acquired and is used as input to clear sky models in order to assess the instruments calibration factors.

The climate, latitude, longitude and altitude of the stations are given in Table I.

3. Data quality control

For all the stations, the first quality control consist of an assessment of the acquisition time stamp. To point out a possible time shift in the data, the symmetry in solar time of the irradiance for very clear days is visually checked. The horizontal global and if available, the normal beam irradiances are plotted versus the sinus of the solar elevation angle for specific clear days. If the time stamp is correct, the afternoon curve should lay over the morning curve as visualized on Figure 1a.

If this test is positive, a verification can be done with the help of the global clearness index K_r defined as:

$$K_t = \frac{G_h}{I_o \cdot \sin(h)}$$

where G_h is the horizontal global irradiance, I_o is the solar constant, and h the solar elevation angle. The clearness index is plotted for the morning and the afternoon data in a separate color. The upper limit, representative of clear sky conditions, should lay

Figure 1a The global horizontal and normal beam irradiances are represented versus the sinus of the solar elevation angle for a clear day.

Figure 1b The global clearness index K_t is represented separately for the morning (green) and the afternoon (yellow) data, versus the solar elevation angle for one year in hourly values.

Clear sky model data are represented in blue.

over for the morning and the afternoon data as represented on Figure 1b for one year of data acquired at the site of Geneva for the year 2006. Hourly clear sky condition values are plotted in light blue on the same graph. When these two conditions are fulfilled, the time stamp of the data bank is correct, and the solar geometry can be precisely calculated. This test is very sensitive and a time shift of only a few minutes will conduct to an visible assymetry. A similar test can be done with the beam clearness index K_p defined as:

$$K_b = \frac{B_n}{I_o}$$

but this parameter is less sensitive to a possible time shift.

The coherence test between the two components can be verified with the help of the global and beam clearness indices (Ineichen 2010). The hourly beam clearness index is plotted versus the corresponding global index as illustrated on Figure 2 for the site of Carpentras. On the same graph, the clear sky data evaluated with the Solis clear sky model (Müller 2004, Ineichen 2008a) are represented for four different values of aerosol optical depth (*aod*). The more usual corresponding Linke turbidity coefficient T_{Lam2} retrieved from the beam irradiance:

$$B_{n} = I_{o} e^{(-\delta_{cda} \cdot T_{Lam2} \cdot MA)}$$

and evaluated at air mass AM = 2 is also given on the graph (Linke 1922, Ineichen 2008b). δ_{cda} is the optical depth of a clean and dry atmosphere. An important deviation from the clear sky lines can indicate calibration uncertainties, beam irradiance missalignement or soiled sensors.

The absolute sensor calibration can be assessed with the help of a clear sky model when the atmospheric aerosol optical depth and the water vapor column are known. These two parameters are normally retrieved from spectral measurements. When the

Atmospheric water vapor column retrieved from ground measurements with the Atwater model [cm]

Figure 2 The beam clearness index is plotted against the global clearness index. On the same graph, clear sky modelled values are represented for 4 different aerosol loads

Figure 3 Atmospheric water vapor column evaluated from the ambiant temperature and relative humidity against the watre vapor retrieved from spectral measurements.

water vapor *w* is missing, it can be evaluated from the ground ambiant temperature (T_a) and relative humidity (HR) by the use of Atwater model (Atwater 1976) with a good precision as illustrated on Figure 3 for the site of Carpentras and data acquired from 2003 to 2009.

For some sites, the *aod* measurements retrieved from independent networks such as aeronet are acquired as soon as direct sun is available; these values are then averaged to give a daily value and used with the Solis clear sky model to evaluate hourly clear sky G_{h} and B_{n} values.

Day by day, the highest hourly value is then selected from the measurements and plotted against the day of the year on Figure 4. These points are representative of the clearest daily sky conditions. Based on the *aod* and water vapor content *w* of the atmosphere, the corresponding clear sky values are evaluated with the model. As the highest values for each day is selected, the upper limit for these two series shoud lay together if the two sets of measurements (irradiance and *aod*) are coherent. On the same graph are also represented the daily clear sky indices defined as:

$$K_h = \frac{\sum_{day} G_h}{\sum_{day} G_{hc}}$$
 and $K_{hb} = \frac{\sum_{day} B_n}{\sum_{day} B_{nc}}$

These values, if the data are coherent, should have an upper limit near of the unity.

4. The clearness index K_t and sky type classification

As it is the case for the majority of the national networks, the global irradiance is the only available measured parameter concerning the solar radiation. Even if for half of the stations the beam component is available, the global irradiance and the corresponding

Figure 4 Daily highest value of the global irradiance reported versus the day of the year for the station of Carpentras, for the measurements and the corresponding clear sky evaluated from the aod and the Solis model. The daily clear sky index is also represented.

clearness index K_t are key parameters in the field of irradiance modelization. The clearness index K_t was introduced as a norm (Black 1954) to characterize the insulation conditions at a given point in time when only the global component is known. Unfortunately, this parameter is not independent of the solar elevation angle as it is shown on the left graphe of Figure 5 where the clearness index K_t is plotted versus the solar elevation angle for the site of Carpentras. It can be seen on this Figure that clear sky conditions, determined by the upper limit of the clearness index values, are not equally represented by K_t for the different solar elevation angles.

In order to use the clearness index as a reliable sky condition descriptor, Perez et al. (1990) modified this parameter to make it independent of the solar elevation angle. The formulation is the following:

$$K_t' = \frac{K_t}{(1.031 \cdot \exp(-1.4 / (0.9 + 9.4 / AM)) + 0.1)}$$

where *AM* is the optical air mass as defined by Kasten (1980). This modified clearness index is represented on Figure 5 (right graph) for the same points than above. It can clearly be seen on this Figure that even if some patterns are still present, the modified clearness index is relatively independent from the solar elevation angle. Therefore, it is now possible to define three zones to characterize three sky types:

clear sky conditions	$0.65 < K'_t \le 1.00$
intermediate sky conditions	$0.30 < K'_t \le 0.65$
cloudy sky conditions	$0.00 < K'_t \le 0.30$

These limits are arbitrary, but are coherent with other classifications, like for example the Cloud Free Index saturation (CFIsat) as defined by Dürr (2006):

$$CFIsat = 100 (CFI - 1) / z$$

where *z* and *CFI* are defined in Dürr (2004). CFIsat is independent from the irradiance measurements; it is a function of the downward surface longwave irradiance and the dry bulb temperature. The comparison between the *CFIsat* and K'_t is illustrated on Figure 6 (right graph). The red dashed lines represent the limits used in the present study and applied on the modified clearness index. In the *CFIsat* classification, clear sky conditions are defined by a *CFIsat* below 0%, and cloudy conditions above 50%. The corresponding limits are represented in blue dashed lines. It can be seen on Figure 6 that the majority of the points are situated in the intersections of the corresponding three zones.

Another assessement can be done with the cloud cover as illustrated on Figure 6 (left graph). Here also, the limits used in the present study are well correlated with the cloud

Five satellite products deriving beam and global irradiance against ground data validation P. Ineichen

Figure 6 Cloud cover and *CFIsat* coefficient versus the modified clearness index. The sky condition selection limits are represented in dashed red lines.

cover (0% cloud cover for the clear sky conditions and 100% cloud cover for the overcast sky conditions).

5. Satellite derived data

Five different products are validated in the present study. The methodology and the input parameters are described in the following section. The product from University of Oldenburg (EnMetSol) is evaluated for two different aerosol climatologies.

5.1 SolarGis

The irradiance components are the results of a five steps process: a multi-spectral analysis classifies the pixels, the lower boundary (LB) evaluation is done for each time slot, a spatial variability is introduced for the upper boundary (UP) and the cloud index definition, the Solis clears sky model is used as normalization, and a terrain disaggregation is finally applied.

Four MSG spectral channels are used in a classification scheme to distinguish clouds from snow and no-snow cloud-free situations. Prior to the classification, calibrated pixel values were transformed to three indices: normalized difference snow index (Ruyter 2007), cloud index (Derrien 2005), and temporal variability index. Exploiting the potential of MSG spectral data for snow classification removed the need of additional ancillary snow data and allowed using spectral cloud index information in cases of complex conditions such as clouds over high albedo snow areas.

In the original approach by Perez (2002), the identification of surface pseudo-albedo is based on the use of a lower bound (LB), representing cloudless situations. This approach neglects diurnal variability of LB that is later corrected by statistical approach. Instead of identifying one value per day, LB is represented by smooth 2- dimensional surface (in day and time slot dimensions) that reflects diurnal and seasonal changes in LB and reduces probability of no cloudless situation.

Overcast conditions represented in the original Perez model by a fixed Upper Bound (UB) value were updated to account for spatial variability which is important especially in the higher latitudes. Calculation of cloud index was extended by incorporation of snow classification results.

The broadband simplified version of Solis model (Ineichen 2008a) was implemented. As input of this model, the climatology values from the NVAP water vapor database (Randl 1996) and Atmospheric Optical Depth data by (Remund 2008) assimilated with Aeronet and Aerocom datasets are used.

Simplified Solis model was also implemented into the global to beam Dirindex algorithms to calculate Direct Normal Irradiance component (Perez 1992, Ineichen 2008c). Diffuse irradiance for inclined surfaces is calculated by updated Perez model (1987).

Processing chain of the model includes post-processing terrain disaggregation algorithm based on the approach by Ruiz-Arias (2010). The disaggregation is limited to shadowing effect only, as it represents most significant local effect of terrain. The algorithm uses local terrain horizon information with spatial resolution of 100 m. Direct and circumsolar diffuse components of global irradiance were corrected for terrain shadowing.

5.2 Heliosat-2 algorithm

The Helioclim 3 data bank is produced with the Heliosat-2 method that converts observations made by geostationary meteorological satellites into estimates of the global irradiation at ground level. This version integrates the knowledge gained by various exploitations of the original Heliosat method and its varieties in a coherent and thorough way.

It is based upon the same physical principles but the inputs to the method are calibrated radiances, instead of the digital counts output from the sensor. This change opens the possibilities of using known models of the physical processes in atmospheric optics, thus removing the need for empirically defined parameters and of pyranometric measurements to tune them. The ESRA models (ESRA 2000, Rigollier 2000 and 2004) are used for modeling the clear-sky irradiation. The assessment of the ground albedo

and the cloud albedo is based upon explicit formulations of the path radiance and the transmittance of the atmosphere. The turbidity is based on climatic monthly Linke Turbidity coefficients data banks.

The Liu and Jordan (1960) model is used to split the global irradiance into the diffuse and beam components.

5.3 3Tier algorithm

Satellite-based time series of reflected sunlight are used to determine a cloud index time series for every land surface worldwide. A satellite based daily snow cover dataset is used to aid in distinguishing snow from clouds. In addition, the global horizontal clearsky radiation G_{hc} is modeled based on the surface elevation of each location, the local time, and the measure of turbidity in the atmosphere. 3Tier opted to use a satellite-based, monthly time series of aerosol optical depth and water vapor derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). This dataset was combined with another turbidity dataset that includes both surface and satellite observations to provide a turbidity measure that spans the period of our satellite dataset and is complete for all land surfaces. The cloud index *n* and the clear sky irradiance G_{hc} are then combined to model the global horizontal irradiance G_h . This component of the process is calibrated for each satellite based on a set of high-quality surface observations. G_h estimates are then combined with other inputs to evaluate the other irradiance components D_h and B_n .

5.4 EnMetSol

The EnMetSol method is a technique for determining the global radiation at ground by the use of data from a geostationary satellite (Beyer 1996, Hammer 2003). It is used in combination with a clear sky model to evaluate the 3 irradiance parameters G_h , D_h and B_n . The key parameter of the method is the cloud index n, which is estimated from the satellite measurements and related to the transmissivity of the atmosphere via

$$K_c = 1 - n$$

where the transmissivity is expressed by the clear sky index K_c defined as the ratio of global irradiance G_h and the corresponding clear sky irradiance G_{hc} :

$$K_c = \frac{G_h}{G_{hc}}$$

Two sets of data produced with the EnMetSol algorithm will be analyzed, corresponding to two different clear sky irradiance models:

• the model of Dumortier (Fontoynont 1998) with the Remund (2009) MeteonormHR high resolution data base for the turbidity input, • and the original Solis clear sky model (Mueller 2004) with monthly averages of AOD (Kinne 2005) and water vapour content (Kalnay 1996) as input parameters.

For the Dumortier clearsky, a diffuse fraction model (Lorenz 2007) is used to calculate the all sky diffuse horizontal irradiance (via G_h - D_h). A recently developed beam fraction model (Hammer 2009) is used to calculate the B_n for all sky conditions with the Solis model.

5.5 IrSolAv

In the IrSolAv irradiance derivation scheme, the cloud index *n* is derived using the methodology developped by Dagestad and Olseth (Dagestad and Olseth, 2007) with some modifications in the ground albedo determination. The ground albedo is computed from a forward and backward moving window of 14 days taking into account its evolution during the day, as function of the co-scattering angle.

The global horizontal irradiance G_h is then evaluated from the cloud index with the model proposed by Zarzalejo (Zarzalejo et al., 2009); it uses as independent variables the cloud index, the 50-percentile of the cloud index for a given place, and the air mass *AM*. The normal beam irradiance B_n is calculated from the global irradiance with the help of Louche correlation (Louche et al., 1991).

In a second step, the clear sky conditions are indentified with the algorithm proposed by Polo (Polo et al., 2009a; Polo et al., 2009b); for these clear conditions, the irradiances are evaluated with the ESRA clear sky model (Rigollier 2000), using the aerosol optical depth *aod* taken from Soda, MODIS or from a method proposed by Polo (Polo et al., 2009a) depending on their availability.

6. Comparison and evaluation procedure

Figure 8 Scatter plots for the global horizontal irradiance produced by EnMetSol for Zurich and Payerne.

step, the comparison can be done by means of scatter plots; these give a visual evaluation of the capability of the model to reproduce the measurements. On these graphs, the diagonal line is representative of an ideal model, and the points should lay around this line. An illustration is given on Figure 8 for Zurich and Payerne, two sites that showing different dispersions.

The statistical parameters like the mean bias difference (*mbd*), the root mean square difference (*rmsd*), the standard deviation (*sd*) and the determination coefficient (R^2) represent a quantification of the model dispersion. These statistical parameters include dispersions introduced by:

- the retrieval procedure,
- the comparison of point measurements (ground data) with aera measurements,
- the comparison of the average of four instantaneous measurements with 60 minutes integrated values.

In the field of solar radiation and natural light, the comparison is often done in term of frequency of occurrence: for the irradiance, it gives an indication of the repartition for each level of radiation, and for the clearness index, that the level of radiation occures at the right time during the day. The obtained graph is a line (or a bar chart) representative of the relative frequency of occurrence of the considered parameter. This is illustrated on Figure 9 for the global irradiance and the corresponding clearness index K_t . On the same graph, the frequency of occurrence of the ground measurements are represented as grey bars, and the different models in color lines.

A second order statistic, the Kolmogorov-Smirnov test (Espinar 2009), is also applied to the data. It represents the capability of the model to reproduce the frequency of occurrence at each of the irradiance level. In order to avoid a peak at the zero level of beam irradiance, these values are excluded form the statistic. A visualisation is given on Figure 10 where the irradiance cumulated frequency of occurrence is represented against

Figure 9 Global irradiance and clearness index K_t relative frequency of occurrence for data acquired in Vaulx-en-Velin (F). The grey bars are representative of the measurements.

Figure 10 Relative frequency of occurrence for the global and the beam irradiance for measurements at the site of Vaulx-en-Velin.

the irradiance for the same site than above. The quantitative value representative of the Kolmogorov Smirnov test Integral (*KSI*) is defined as:

$$KSI = \int_{G_{h\min}}^{G_{h\max}} \left| F_c(G_h) - F_c(G_{h\mod}) \right| \cdot dG_h$$

where $F_c(G_h)$ and $F_c(G_{hmod})$ are respectively the ground measurements and the corresponding modelled cumulated frequencies of occurrence.

7. Global irradiance results

To ensure a correct and comparable validation of the different products, the following method was used to merge the products and the ground measurements: for each generated value, the nearest time stamped corresponding ground value is searched in the data base; this means that the satellite image was taken within the ground integration

Figure 11 Average global irradiance and absolute mean bias difference

	KSI			1	34	19	1	67	16		19	6	16	32	33	17		15		45	13	11	18	10	n/a
olAv	sd			121	147	75	86	217	75		62	81	85	20	126	172		80		116	62	87	69	95	83
IrS	pqm			9-	-28	-13	2	-67	16		2	-	-	-29	-14	2		7		45	11	က်	-18	7	٢
	\mathbb{R}^2			0.901	0.834	0.962	0.943	0.689	0.963		0.955	0.943	0.943	0.974	0.886	0.765		0.959		0.927	0.950	0.932	0.972	0.920	n/a
r)	KSI	8	8	14	33	8	53	131	24	14	14	10	13	25	17	64	15	16	6	17	14	ę	21	16	n/a
Dumortie	sd	44	47	46	92	60	50	210	57	54	54	45	55	53	61	168	76	64	52	78	47	47	47	79	55
nMetSol (pqm	ę.	0	14	-29	7	22	-130	24	-10	14	-7	14	-23	ø	-63	10	-11	-7	7	14	-	-20	16	4
Ē	\mathbb{R}^2	0.981	0.981	0.986	0.937	0.976	0.982	0.697	0.979	0.964	0.979	0.983	0.978	0.986	0.975	0.747	0.972	0.975	0.972	0.966	0.983	0.981	0.987	0.950	n/a
	KSI	9	œ	6	51	12	11	162	34	13	19	7	8	18	16	102	14	14	10	23	19	7	23	6	n/a
l (Solis)	sd	43	47	45	89	60	47	208	58	54	51	44	53	53	58	159	78	63	51	80	46	47	47	76	54
EnMetSo	mbd	Ļ	-	8	-50	12	16	-161	34	-7	19	4	8	-15	ကု	-102	11	6-	ø	-10	19	ς	-22	8	4
	\mathbb{R}^2	0.982	0.981	0.987	0.946	0.976	0.983	0.703	0.978	0.964	0.981	0.984	0.978	0.985	0.978	0.757	0.970	0.975	0.973	0.965	0.983	0.981	0.988	0.950	n/a
	KSI	16	15	6	21	11	12	25	23	18	23	14	11	27	26	24	15	16	21	17	18	13	17	19	n/a
er e	sd	63	99	55	107	78	72	177	73	80	75	65	74	73	83	159	80	76	72	94	99	64	99	85	70
3Tie	pqm	3	5	4	9	ကု	10	18	23	10	23	Ϋ́	5	-24	<u>+</u>	11	15	ę	÷	17	18	4	-16	18	4
	\mathbb{R}^2	0.961	0.962	0.980	0.915	0.959	0.960	0.811	0.966	0.920	0.959	0.963	0.958	0.970	0.954	0.806	0.970	0.964	0.944	0.951	0.965	0.963	0.974	0.937	n/a
	KSI	5	6	10	31	6	4	49	28	18	24	9	14	33	43	50	30	16	16	52	11	13	18	13	n/a
t 3v3	sd	58	63	59	107	67	59	170	68	78	80	79	68	57	88	143	85	60	80	117	60	61	59	87	20
Heliosa	pqm	-4	9	7	29	e	-	29	28	11	24	4	-14	-34	43	50	30	-16	ო	52	11	-13	-16	e	4
	\mathbb{R}^2	0.967	0.966	0.978	0.915	0.971	0.974	0.817	0.970	0.930	0.955	0.948	0.964	0.982	0.947	0.838	0.968	0.978	0.940	0.927	0.972	0.969	0.980	0.940	n/a
	KSI	6	8	4	19	9	12	00	21	10	15	6	4	11	21	16	5	ю	4	11	14	9	7	12	n/a
Gis	sd	49	52	48	89	67	55	132	62	59	54	49	57	51	75	134	56	53	53	76	51	55	53	74	55
Solart	pqm	9	မု	4	-13	4	12	-4	21	4	16	-7	е	-	-1	က္	e	е	4	6	15	ကု	4	10	3
	\mathbb{R}^2	0.977	0.976	0.985	0.942	0.971	0.977	0.899	0.976	0.958	0.979	0.979	0.976	0.986	0.963	0.858	0.985	0.982	0.971	0.968	0.980	0.973	0.984	0.953	n/a
	qu	4153	4087	3993	4200	3600	3622	3311	3509	3306	4184	4200	4005	2890	4280	3933	4293	3675	3784	2499	4141	4203	3221	4192	75837
	h [W/m ²]	258	273	379	326	413	317	399	410	228	314	292	304	576	325	357	529	384	266	446	308	288	549	274	332
	9	Cabauw	Camborne	Carpentras	Davos	El Saler	Geneva	Jungfraujoch	Las Majadas	Lerwick	Locarno	Nantes	Payerne	Sede Boger	Sion	Sonnblick	Tamanrasset	Thessaloniki	Toravere	Val d'Alinya	Vaulx-en-Velin	Wien	Yatir Forest	Zurich	All sites

The sites in grey are not taken into account in the	
les for the global horizontal irradiance.	
ond order statistics in absolute valu	
able II First and seco	overall statistics.

				Sola	rGis			Heliosa	t 3v3			3Tier			Ш	MetSol (S	olis)		EnMe	tSol (Dun	nortier)			IrSolAv		
	$G_{\rm h} \left[W/m^2 \right]$	qu	\mathbb{R}^2	%pqm	%ps	KSI	\mathbb{R}^2	%pqm	%ps	KSI	R ² n	%pqu	%ps	KSI	R ² m	s %pq	d% k	SI	2 ² m	s %pc	d% k	(SI R	2 mbc	1% sd	% K	SI
Cabauw	258	4153	0.977	ę-	19	6	0.967	-2	23	5	0.961	1	24	16 C	.982	-1	17	6 0.	981	-	17	8				
Camborne	273	4087	0.976	?	19	8	0.966	2	23	თ	0.962	÷	24	15 0	.981	-	17	8	981		17	8				
Carpentras	379	3993	0.985	-	13	4	0.978	2	16	10	0.980	÷	14	6	.987	2	12	0 0	386	4		14 0.9	01	8	-	-
Davos	326	4200	0.942	-4	27	19	0.915	6	33	31	0.915	-2	33	21	.946	-15	27 5	51 0.	937	6-	80	33 0.8	34 -8	4	0	4
El Saler	413	3600	0.971	-	16	9	0.971	-	16	б	0.959	÷	19	11	.976	3	14	0.	976		4	8 0.9	62	~	~	6
Geneva	317	3622	0.977	4	17	12	0.974	0	19	4	0.960	e	23	12	.983	5	15	1	982	. 2	91	22 0.9	43 2	2	-	-
Jungfraujoch	399	3311	0.899	Ţ	33	00	0.817	7	43	49	0.811	2	44	25 C	.703	-40	52 1	62 0.	- 265	33	53 1	31 0.6	-1-	2 2	1 6	2
Las Majadas	410	3509	0.976	5	15	21	0.970	7	17	28	0.966	9	18	23 0	.978	8	14	34 0.	979	9	4	24 0.9	63 4	~	~	9
Lerwick	228	3306	0.958	÷	26	10	0.930	5	34	18	0.920	4	35	18	.964	ę	24	0	964	4	24	4				
Locarno	314	4184	0.979	5	17	15	0.955	8	25	24	0.959	7	24	23 0	.981	9	, ,	0.	979	4	, 11	14 0.9	55 1	10		6
Nantes	292	4200	0.979	7	17	თ	0.948	-	27	9	0.963	-2	22	14	.984	-	15	7 0.	983		` 91	10 0.9	43 0	ñ	~	•
Payerne	304	4005	0.976	-	19	4	0.964	ς	23	14	0.958	2	24	1	.978	3	17	8	978	4	` 81	13 0.9	43 0	Ñ	~	9
Sede Boger	576	2890	0.986	0	6	1	0.982	9	10	33	0.970	4-	13	27 C	.985	ņ	` 6	8	986	4	6	25 0.9	74 -5	÷-	e e	2
Sion	325	4280	0.963	ကု	23	21	0.947	13	27	43	0.954	ς.	25	26 C	.978	-	18	.0	975	Q	` 61	17 0.8	98	т т	33	с С
Sonnblick	357	3933	0.858	Ţ	38	16	0.838	14	40	50	0.806	с С	44	24 C	.757	-29	45 1	02	747 -	18	17 6	54 0.7	.65 1	4	~	7
Tamanrasset	529	4293	0.985	0	1	5	0.968	9	16	30	0.970	e	15	15	.970	5	15	4	972		4	15				
Thessaloniki	384	3675	0.982	-	14	ო	0.978	4	16	16	0.964	-2	20	16 0	.975	-2	16 、	4	975	ب	, 21	16 0.9	59 -1	Ň	-	5
Toravere	266	3784	0.971	÷	20	4	0.940	-	30	16	0.944	0	27	21	.973	ņ	,	0	972	ç	50	6				
Val d'Alinya	446	2499	0.968	2	17	11	0.927	12	26	52	0.951	4	21	17	.965	-2 -	18	ю Ю	996		, 8	17 0.9	27 10	0	6	ŝ
Vaulx-en-Velin	308	4141	0.980	2	16	14	0.972	ო	20	1	0.965	9	22	18	.983	9	15 ,	0 0	983	2	15	14 0.9	50 4	Ñ		с С
Wien	288	4203	0.973	Ļ	19	9	0.969	4	21	13	0.963	-	22	13	.981	-7	16	7 0.	981		16	3 0.9	32 -1	ē	-	-
Yatir Forest	549	3221	0.984	÷	10	7	0.980	ကု	11	18	0.974	ς.	12	17 0	.988	4	6	0 0	387	4	6	21 0.9	72	~	~	8
Zurich	274	4192	0.953	4	27	12	0.940	-	32	13	0.937	9	31	19 0	.950	з	28	0 0	950	9	, 67	16 0.9	20 3	õ	1	0
All sites	332	75837	n/a	-	17	n/a	n/a	-	21	n/a	n/a	-	21	n/a	n/a	+	16 r	/a r	/a	- -	16 r	va nv	'a 0	ю.	с 	/a
]

Table III First and second order statistics in relative values for the global horizontal irradiance. The sites in grey are not taken into account in the

overall statistics.

Five satellite products deriving beam and global irradiance against ground data validation P. Ineichen Five satellite products deriving beam and global irradiance against ground data validation P. Ineichen

Figure 12 Absolute standard deviation for the global irradiance. In red, the average G_{b} .

Figure 14 Second order statistics KSI for the global irradiance

period. Then, only hours for which ground and both generated products are present are taken into account in the validation procedure; so, mainly the ground data availability restrict the number of points in the comparison.

The results of the validation are given on Table II and Table III respectively in absolute and relative values. The corresponding graphs are given on Figure 11 to 14.

The first established fact is that the sites of Davos, Jungfraujoch and Sonnblick give much higher differences than the other stations. This is due to the snow cover during all or part of the year, which is not taken into account by all the models, and is difficult to evaluate precisely. This is clearly visible on frequency of occurrence plotted fir the clearness index as shown on Figure 15 for the site of Sonnblick. These site are not part of the overall statistics. The site of Nantes is also represented on Figure 15 for comparison purpose.

The overall average mean bias deviation is very low for all the products, and except for heliosat 3, the sign of the mean bias deviation is in general the same for all the algorithms. It is interesting to note that for high latitude sites (Cabauw, Camborne, Lerwick and Toravere), the bias is even lower than for the middle latitude sites. The site of Val d'Alynia in Spain shows slightly variable bias depending on the product, this can be explained by

Figure 15 Frequency of occurence of the clearness index for the site of Sonneblick (high altitude and snow) and for Nantes.

Figure 16 Frequency of occurence of global irradiance and the clearness index for the site of Val d'Alynia.

the high altitude of the site (1770m) and the mountainous environment. The produced irradiance varie from one algorithm to the other; the corresponding graph is given on Figure 16 for the global irradiance and the clearness index. This can be due to the clear sky model used for the normalisation in conjunction with their input parameter (atmospheric water vapor content, aerosol load and linke turbidity).

In term of absolute standard deviation (due to the negligible bias, the root mean square difference and the standard deviation are equivalent), except for the high altitude stations (Davos, Jungfraujoch, Sonnblick and Val d'Alynia), all the site show the same order of magnitude, including the high latitude sites. Due to the high irradiance level for Carpentras, Sede Boqer, Tamanrasset and Yatir forest, the sites show good relative standard deviations.

The choice of a clear sky model is a key point in the satellite irradiance derivation, it will have a direct influence on the output. The measured and modelled global clearness

Figure 17 The global clearness index K_t represented against the solar elevation angle for the site of Carpentras. In yellow, the measurements and in blue the different products.

Five satellite products deriving beam and global irradiance against ground data validation P. Ineichen

Figure 18 Global irradiance mean bias difference against the solar elevation angle (left) and the atmospheric water vapor content for two products and the site of Carpentras.

index is plotted against the solar elevation for all the products and the site of Carpentras on Figure 17. On these graphs, the clear sky conditions are represented by the upper boundary; it is interesting to point out that even if there is a great gap between the measurements and the modelled values for Helioclim, the overall performance is of the same order of magnitude than for the other products. It can also be noted here that for half of the products, the highest and the lowest modelled values of K_r are never reached.

To better understand the bias, a dependence analysis is done with the solar elevation angle and the water vapor column. To illustrate the results, two examples are given on Figure 18 where the bias is represented against the considered parameter, and a best fit is traced to underline the tendency. If the main pattern of all the models is to underestimate the global irradiance for low water vapor column values and overestimate it for high *w*, the bias pattern is variable from one model to the other with the solar elevation angle.

The study was also done with the turbidity, but this parameter was not available except for the sites of Carpentras and Sede Boqer, and on a daily basis. As for the water vapor content, the general tendency is a positive slope on the bias with the daily aerosol optical depth. An illustration for EnMetSol is given on Figure 19.

The irradiance for clear sky conditions is directly derived from the clear sky model. For

Figure 19 Global irradiance mean bias difference against the daily aerosol load of the atmosphere for the two sites of Sede Boqer and Carpentras.

			Sola	rGis	Helios	at 3v3	ЗТ	ïer	EnM (So	etSol lis)	EnM (Dum	etSol ortier)	IrS	olAv
sky type	G _h	nb	mbd	sd	mbd	sd	mbd	sd	mbd	sd	mbd	sd	mbd	sd
alaan	400	25024	-9	43	-23	49	-18	57	-16	41	-16	43	-25	66
Clear	490	33624	-2%	9%	-5%	10%	-4%	11%	-3%	8%	-3%	9%	-7%	17%
intermediate	240	24006	12	67	22	75	12	80	20	60	19	61	19	95
Interneulate	249	24090	5%	27%	9%	30%	5%	32%	8%	24%	8%	25%	11%	53%
overeset	02	15017	18	49	39	65	42	62	25	48	24	48	36	79
overcast	02	12917	22%	60%	48%	80%	51%	75%	30%	58%	29%	59%	63%	138%

Table IV First order statistics in absolute and relative values for the global horizontal irradiance and for the three sky conditions. The absolute values are in $[W/m^2]$.

all sky condition, the clear sky model is combined with the cloud index. It is therefore interesting to differentiate the sky conditions following the rules defined in section 4. Table IV gives the overall results obtained for the three sky types. Without surprise, the clear sky conditions show the lowest standard deviation. All the algorithms have the same tendency to underestimate for clear conditions, and overestimate the global irradiance for intermediate and overcast conditions. Going more into details, the same tendency is also visible for all the sites. This is illustrated on Figure 20 for a cloudy (Lerwick) and a sunny (Carpentras) site. All the Figures and the complete Tables are given in the Annex.

The second order statistic given by the Kolmogorov-Smirnov index is a combination of

Figure 20 Global irradiance mean bias difference against the modified clearness index for the two sites of Lerwick and Carpentras.

Figure 21 Clearness index cumulated frequecy of occurrence for two sites with comparable standard deviation: Sion and Nantes.

the bias, the standard deviation (dispersion) and the cumulated frequency of occurence. It is more sensitive and highlights smaller deviations than the first order indicators. This can be seen for example for the sites of Sion or Sede Boqer, where the standard deviation is similar to the other sites, but the clearness index frequency of occurence shows descreapancies with the corresponding measurements. The cumulated frequency of occurrence for Sion and Nantes are given on Figure 21. The deviation from the measurements in Sion is visible for all the models at low and high irradiance levels; it can be due to snow in the Rhône Valley.

In conclusion, except for the four high altitude sites (potentially with snow), the average bias is around 1% (4 $[W/m^2]$), positive for all the models. The best product derives the global irradiance with a standard deviation of 16% (55 $[W/m^2]$).

Some models never reach the measured highest and lowest clearness index. The majority of the products show a bias dependance with the solar elevation angle, the water vapor column and when available, with the aerosol optical depth. In term of sky type, the general pattern is to underestimate the global irradiance for clear conditions, and to overestimate it for all the other conditions. Not all models take into account the snow, but even when included in the algorithm, the global irradiance for the concerned sites is not satisfactory.

8. Beam irradiance results

The same methodology is used for the validation of the beam irradiance component, except that the slots with no direct irradiance are excluded from the validation in order to avoid a bias in the overall statistic and a peak at zero irradiance in the frequency of occurrence.

Figure 22 Average beam irradiance and absolute mean bias difference

				SolarG	Sis			Heliosat :	1v3			3Tier			En Met	Sol (Solis)		En	MetSol (D	umortier)			IrSolAv		
	$B_n [W/m^2]$	qu	\mathbb{R}^2	pqm	sd	KSI	R ²	pqu	sd F	(SI	R ² ml	bd s	d KS	R ²	pqm	sd	KSI	\mathbb{R}^2	mbd	ps	KSI	\mathbb{R}^2	pqu	sd k	SI
Cabauw	220	4095	0.939	-13	93	28 C	1.877	32	130 2	28 0.	368 2 [.]	4 13	6 14	0.931	ę	100	47	0.933	10	97	39				
Camborne	231	3471	0.942	9	96	28 ().885 250	88 9	134	26	896 2 207	2 2	5 5 70	0.937	~ '	101	46	0.940	27	98 100	33			į	9
	448 314	3993 4200	0.936	-19 34	118	3 0 70 70 70 70 70 70 70 70 70 70 70 70 7	0C8.0	8 104	1 747	3/ 08	- CU2	5 14 27		0.924	-115	257	39 276	0.923	32 -23	128 244	190	0.729	9 - 1	3/ 2/	20
El Saler	-			-				-		2		i)			-		Ì		0)		1		0
Geneva	307	3622	0.918	5	125	41 C	.887	13	145	39 0.	869 3	2 16	1 42	0.933	3 10	113	35	0.937	46	112	14	0.853	3	65	4
Jungfraujoch	185	3311	0.541	285	360	158 (1.327	326	373 2	.16	461 3	10 36	172	0.316	-88	350	578	0.333	7	365	485 (0.399	127 3	65 3	65
Las Iviajauas Lerwick	157	3119	0.890	σ	110	30	782	. 28	160	12	764 5.	8 16	8 47	0.902	4	104	41	0.906	13	102	27				
Locarno				9	2				2	;		5	:						2	1	i				
Nantes	284	4199	0.943	-31	95	37 C	0.838	12	157 ;	32 0.	1- 068	9 13	2 25	0.945	5 -14	94	27	0.944	-27	96	33	0.851	-9	54 1	-
Payerne	264	4005	0.889	15	140	32 (.841	16	166	73 0.	832 4	9 17	8 12	0.887	24	142	48	0.893	58	142	8	0.821	19	1	8
Sede Boger	638	2746	0.887	-46	115	56 (.763	-86	168 1	01	760 -4	16	63	0.835	-98	138	84	0.826	-43	144	62	002.0	-43	87 6	0
	L L C	0000	0010	11	010	0	001			0	10	20	C L	1		000	100	0110	c	010	010	1010	0	0	L
Tomonick	107	0000	0.700	- 6	0/7	27	750	0.72			10/1	2 C	000	0.49.0	-123	320	202 60	0.450	⊃ G	0+0	740	47C.U	001	200	0
Thesealoniki	n+0	1230	0.321	17-	001	5	00.1.1	5	007		-	4	0	210.0	7	101	00	0.040	00	20					
Toravere	286	3784	0.929	-30	112	36 0	.807	13	183	17 0.	792 1.	5 18	8 32	0.890	-43	140	84	0.897	-15	133	65				
Val d'Alinva																									
Vaulx-en-Velin	316	4060	0.939	φ	103	34 0	0.888	19	137	30	893 3	0	0 54	0.946	11	96	23	0.950	12	94	1	0.878	0	4:	5
VVIEN Yatir Forest	197	4203	0.900	ņ	124	37.6	0.880	41	- -	.0	7 909	6	084	0.907	۹ <u>۱</u> -	121	143	0.909	17	119	116	0.834		28	9
Zurich																									
All sites	326	45590	n/a	-11	115	n/a	n/a	25	163 r	1/a r	1/a 1	7 16	0 n/a	n/a	-2	128	n/a	n/a	19	125	n/a	n/a	-3 1	76 n	/a
																									1
Table V	First :	and s	econd	ordei	r stati	stics	in abs	solute	s value	es for	- the r	ormá	l bea	m irra	dianc	e. The	sites	in are	ev are	e not t	aken	into	accou	nt in 1	he
overall stat	Fistics) ;) ;))								מ)
										·				-											Ī
				SolarG	Sis			Heliosat 3	1v3			3Tier			EnMet	Sol (Solis)		En	MetSol (D	umortier)			IrSolAv		
	B_n [W/m ²]	qu	\mathbb{R}^2	%pqm	%ps	KSI	R ² rr.	\$ %pq	۹ %b«	(SI	R ² mb.	d% sd	% KS	R ²	%pqm	%ps	KSI	\mathbb{R}^2	%pqm	%ps	KSI	R ² n	s %pqu	d% k	SI
Cabauw	220	4095	0.939	9-	42	28 G	1.877	15	59 2	28 0.	368 1	1 6.	2 14	0.931	4	45	47	0.933	4	44	39				
Camborne	231	3471	0.942	e	42	28 C	0.885	29	58	26 0.	896 1	0 5	5 20	0.937	3	44	46	0.940	12	42	31				
Carpentras	448	3993	0.936	4	26 26	45 C).856 740	0.0	38	37 0.	905	ю о о	8	0.924		29	39	0.923	~ ~	29 10	50	0.729		8 23	60
El Saler	314	4200	0.864		09	94	0.748	33	L 6/	08	L /0/	2	0	0./30	-36	7.8	972	197.0	/-	8/	190	0.663	4	1 26	22
Geneva	307	3622	0.918	2	41	41 G	1.887	4	47	39 0.	869 1	0	2 42	0.933	33	37	35	0.937	15	36	14	0.853	.	22	4
Jungfraujoch	185	3311	0.541	154	194	158 C	1.327	176	201 2	16 0.	461 16	37 2C	174	0.315	-48	189	578	0.333	4	197	485 (0.399	69 1	97 3	65
Las Majadas Lerwick	157	3119	0.890	ų	70	30	782	50	7 601	10	764 3	7 10	7 47	0 905	<i>c</i> -	67	41	0 906	¢	65	27				
Locarno				,	2			2	1	;			:			;	:		,		i				
Nantes	284	4199	0.943	÷ -	34	37 ().838	4	55	32 0.	890	4	5 25 55	0.945	ις Γ	33	27	0.944	6- <u>-</u>	34	8	0.851	ကို၊	12	-
Payerne Sede Roder	264 638	4004 2746	0.889	9 2-	53 18	32	1.841 - 763	13 0	63 26 1	5 0	832 1	ה מ ה מ	12	0.887	5 F	54 20	48 84	0.893	77	54 23	36	128.0	< r-		20 00
Sion	200	2 i	00.0	-	2	ŝ	8	2	2	5	8	0	3	2000	:	1	5	040.0	-	2	3	000		2	2
Sonnblick	257	3933	0.708	99	107	32	0.496	105	130	30 0.	487 6	7	1 58	0.455	-48	125	365	0.450	0	135	246 (0.524	65 1	40 8	55
I amanrasset Thescaloniki	242	4293	0.927	Ą	Q 7	10	00.7.0	11	43	0.	811	Ň	20	0.815	0	3/	60	0.843	13	c;	5				
Toravere	286	3784	0.929	-11	39	36 0	1.807	4	64 4	47 0.	792 £	9 9	5 32	0.890	15	49	84	0.897	-2	47	65				
Val d'Alinya																									
Vaulx-en-Velin	316 257	4060	0.939	ų.	33	34	.888	9 9	43	30	893 1	0 0 4 u	4 04	0.946	е С	31	23	0.950	4 ;	30 16	11	0.878	0 -	46 2	<u> </u>
Yatir Forest	107	4200	0.900	-	0	76	000.	D	ŝ	ő R	-	5	b	0.901	P	Ť	2	0.909	=	0	2	+00.0	-	-	2
Zurich	000	00117	-		L		-							4		ç	-1			0	4	4			4
All sites	326	45590	n/a	4	35	n/a	n/a	8	50 r	1/a	1/a (4	9/u 6	n/a	÷	39	n/a	n/a	9	38	n/a	n/a	÷.	54 D	/a
Table VI	First ,	and s	econd	orde	r stat	istics	in rel	ative	value	ss for	the n	orma	l bear	n irrao	dianc∈	e. The	sites	in gre	y are	not t	aken	into á	accoul	nt in t	he

Five satellite products deriving beam and global irradiance against ground data validation P. Ineichen

overall statistics.

Five satellite products deriving beam and global irradiance against ground data validation P. Ineichen

Figure 23 Relative standard deviation for the global irradiance.

Figure 24 Second order statistics KSI for the global irradiance

The first and second statistics are given on Table V and VI, and on Figures 22 to 24. It can be seen on Figure 22 that the absolute bias for the beam component is variable from one site to the other, and depends on the product: for example, it is positive in Payerne (15-60 W/m2) and highly negative in Sede Boqer (-70 to -110 W/m2). For Tamanrasset, it varies from -27 [W/m²] (Geomodel) to +68 [W/m²] (EnMetSol) and +94 [W/m²] (Heliosat), and for Lerwick, from -4 to +78 [W/m²].

The standard deviation varies from 20% to 100%; it is highly variable in absolute and relative values. The site of Sede Boqer show the best values, but as it is a standard deviation, it doesn't take into account the its high mean bias. These deviation are illustrated on Figure 25, where on the left graph, the beam clearness index K_b is represented versus the solar elevation angle. It can be seen that the modelled clear sky upper limit never reaches the corresponding measurements. On the right graph, the

Figure 25 Beam clearness index versus the solar elevation angle, and the corresponding relative frequency of occurrence for the site of Sede Boqer.

frequency of occurrence is represented: the clear sky peak is to low for all the products. Part of the discreapancy can be an calibration issue. In fact, when comparing the BSRN beam ground measurements with the clear sky irradiance evaluated with solis from aeronet *aod* measurements, a 4% difference is visible as illustrated on Figure 26 (left: uncorrected, right: corrected by 4%). Also, inspecting BSRN data from Sede Boqer, a common 41 days sequence was found in data from 2005 and 2006. Comparison with satellite evaluated data conducted to eliminate this sequence from the present validation as it was much better reproduced with 2005 data. The 4% correction is allready included in the above results.

The relative standard deviation is comparable for all the sites, except for Lerwick, the

Figure 26 Sede Boqer beam irradiance before and after correction. On top, beam irradiance and clear sky index; bottom, daily measurements and évaluated data.

Five satellite products deriving beam and global irradiance against ground data validation P. Ineichen

Figure 27 Normal beam irradiance mean bias difference against the solar elevation angle (left) and the atmospheric water vapor content (right) for the site of Carpentras.

Figure 28 Normal beam irradiance mean bias difference against the daily aerosol load of the atmosphere for the two sites of Sede Boqer and Carpentras.

highest site in term of latitude, and where the average beam irradiance is very low. As for the global component, the results are good for the high latitude sites, and, due to the snow, not significative for the high altitude sites.

The same parameter dependance than for the global irradiance is conducted on the beam component. The results are given on Figures 27 and 28, where the same sites and models as for the global component are represented; they show very similar pattern (see Figures 18 and 19). This is a consequence of the method used to derive the beam irradiance: all the algorithm derive in a first step the global component, and split it into beam and diffuse with the help of a diffuse fraction model (Dirindex (Perez 1992) for SolarGis, Liu and Jordan (Liu 1960) for Helioclim, and in-house models for the other products). This means that the conclusion drawn for the global are also valid for the

			Sola	rGis	Helios	at 3v3	ЗТ	ier	EnM (Sc	etSol olis)	EnM (Dum	etSol ortier)	IrSe	olAv
sky type	B _n	nb	mbd	sd	mbd	sd	mbd	sd	mbd	sd	mbd	sd	mbd	sd
cloar	627	20252	-66	121	-61	163	-45	161	-66	138	-24	137	-83	179
Clear	027	20552	-10%	19%	-10%	26%	-7%	26%	-10%	22%	-4%	22%	-13%	29%
intermediate	142	15172	40	110	119	146	81	163	58	108	72	114	73	171
Interneulate	142	15175	28%	78%	84%	103%	57%	115%	41%	76%	51%	81%	52%	120%
overeast		10065	14	45	51	70	38	93	18	50	18	52	39	89
overcast	5	10065	302%	983%	1117%	1522%	831%	2022%	394%	1084%	393%	1129%	845%	1927%

Table VII First order statistics in absolute and relative values for the normal beam irradiance and for the three sky conditions. The absolute values are in $[W/m^2]$.

beam irradiance, even if the effects are more important due to the chained models.

The validation results for the three categories of the sky type are given on Table VII where the results for overcast conditions are included, even if they are not significative. Here again, comparable conclusions can be drawn, the bias is negative for clear conditions and positive for intermediate skies.

The above results are also visible on the second order statistic *KSI*, as illustrated on Figure 24 and 29, and given in Table V and VI. The fact that the beam is measured or retrieved from the global and the diffuse is not the main issue on the difference in the cumulated frequency of occurrence curves, it is more a site effect.

In conclusion, the beam irradiance is retrieved from the satellite images with an average standard deviation of 35% to 54% depending on the model. In term or irradiance value, it rages from 90 to 200 $[W/m^2]$ according to the model and the site. The mean bias difference is slightly higher than for the global component, negative for clear conditions and positive for intermediate skies.

As the beam component is derived from the global, the dependances with the different parameters are similar but sharper than for the global irradiance.

9. Conclusions

The first conclusion is that the quality control is a key point in any model validation. Even if the data are highly qualified by the organisation in charge of the acquisition, uncertainties can remain in the data and influence the validation. The best case is when independent data such as aerosol optical depth are available.

The main conclusions of the present study are represented by the first order statistics:

• for latitude from 20° to 60°, altitude from sea level to 1800 m and various climate, the global irradiance is retrieved with a negligible bias and an average standard

Figure 29 Beam clearness index cumulated frequecy of occurrence for Nantes where the beam is retrieved from the diffuse, and Payerne where the beam componant is acquired.

deviation around 16% for the best algorithm. For the beam irradiance, the bias is around several percents, and the standard deviation around 35%,

- as expected, the main dependance comes from the knowledge of the aerosol optical depth. A lower dependance with the atmospheric water vapor column and the solar elevation angle is pointed out,
- even if the snow cover is taken into account in the algorithm, the sites situated in high altitude such as Junfraujoch and Sonnblick give bad results and are not take into account in the overall statistic.
- the high latitude sites such as Cabauw, Camborne or Toravere give not poorer results than the other sites, only Lerwick, the highest site in latitude (60°N) presents more difficulties. It has also very low levels of irradiance,
- for the majority of the sites, SolarGis and EnMetSol give the best statistics for both of the components.

Neverteless, the interannual variability of the irradiance conditions (it has be shown in a previous study that even for the same site and algorithm, the results can vary from one year to the other, Ineichen 2010a), the lack of independent ground measurements such as aerosol data, the difficulty to assess the exact calibration of the ground data, and the choice of a specific year to carry out the validation, conduct to results that give good indications, but from which it is difficult to draw general conclusions.

10. Acknowledgements

This comparative study could be performed thanks to the data provided by the FluxNet community (http://www.fluxdata.org), the Baseline Surface Radiation Network, the Aeronet network, the CSTB of Nantes and ENTPE in Vaulx-en-Velin, the World Radiation Data Center, and the Swiss Institute of Meteorology.

The derived products where kindly provided by Geomodel in Slovakia, 3Tier in Seattle, the Helioclim data bank in France, University of Oldenburg in Germany, and IrSolAv company in Spain.

11. Nomenclature and abbreviations

- I_o solar constant in W/m²
- B_n direct normal incidence irradiance in W/m²
- G_h surface solar global irradiance on a horizontal plane in W/m²
- G_{hc} clear sky surface solar irradiance in W/m²
- D_h surface solar diffuse irradiance on a horizontal plane in W/m²
- K_r global or surface solar irradiance clearness index
- K_{p} beam clearness index
- K_c clear sky index
- K_{h} daily global clear sky index
- K_{hb} daily beam clear sky index
- n cloud index
- $F_{c}(G_{h})$ cumulated frequecy of occurrence of the global irradiance
- *h* solar elevation or altitude angle in degrees (°)
- AM optical air mass
- RTM radiative transfer model
- T_{L} Linke turbidity
- aod aerosol optical depth, or atmospheric aerosol load
- T_a surface (ambient) temperature
- HR relative humidity
- w atmospheric total water vapour column
- *mbd* mean bias difference
- rmsd root mean square difference
- sd standard deviation
- *KSI* Kolmogorov-Smirnov index, second order statistic

12. References

Aeronet (AErosol RObotic NETwork) program, http://aeronet.gsfc.nasa.gov/

Atwater M.A., Ball J.T. (1976) Comparison of radiation computations using observed and estimated precipitable water. Appl. Meteorol. 15, 1319-1320

Beyer HG, Costanzo C, Heinemann D (1996): Modications of the Heliosat procedure for irradiance estimates from satellite data. Solar Energy 56, 207–212.

Black J.N., Bonython C.W., Prescott J.A. (1954) *Solar radiation and the duration of sunshine*. Quart. J. Roy. Met. Soc. 80, pp231-235

Dagestad, K. F. and Olseth, J. A., (2007). A modified algorithm for calculating the cloud index. Solar Energy. 81, 280-289.

Derrien M., H. Gleau (2005) MSG/SEVIRI cloud mask and type from SAFNWC, International Journal of Remote Sensing, 26, 4707-4732. DUMORTIER D (1998): The Satellite model of turbidity variations in Europe. Technical Report

Dürr B., Philipona R, (2004) Automatic cloud amount detection by surface longwave downward radiation measurements. J. Geoph. Res., Vol 109

Dürr B. (2006), personal communication

Espinar B, Ramirez L, Drews D, Beyer H.G, Zarzalejo L.F, Polo J, Martin L. (2009) Analysis of different comparison parameters applied to solar radiation data from satellite and German radiometric stations, *Solar Energy* 83 (2009) 118–125

ESRA (2000) The european solar radiation atlas. Coordinators : K. SCHARMER, J. GREIF, ISBN : 2-911762-21-5

Fontoynont M, Dumortier D et al. (1998) Satellight: A WWW server which provides high quality daylight and solar radiation data for Western and Central Europe. 9th Conference on Satellite Meteorology and Oceanography, 434–437.Frouin R. A., Chertock B., (1992). A technique for global monitoring of net solar irradiance at the ocean surface. Part 1 : Model, *Journal of Applied meteorology*, 31,pp. 1056-1066.

Hammer A, Heinemann D, Hoyer C, Kuhlemann R, Lorenz E, Müller R, Beyer HG (2003): Solar energy assessment using remote sensing technologies. Remote Sensing of Environment, 86, 423–432. Hammer A, Lorenz E, Kemper A, Heinemann D, Beyer HG, Schumann K, Schwandt M (2009): 'Direct normal irradiance for CSP based on satellite images of Meteosat Second Generation', SolarPACES 2009, Berlin

Helioclim (2009) Sun radiation atlas based on processing of Meteosat data. <http://www.helioclim.net/>

Ineichen P, Perez R. (2002) A new airmass independent formulation for the Linke turbidity coefficient. Solar Energy **73**, No. 3, 151–157

Ineichen P. (2008c). Comparison and validation of three global-to-beam irradiance models against ground measurements. Sol. Energy , doi:10.1016/j.solener.2007.12.006

Ineichen P. (2008a) A broadband simplified version of the Solis clear sky model, Solar Energy 82, pp 758–762

Ineichen P. (2008b) Conversion function between the Linke turbidity and the atmospheric water vapor and aerosol content, Solar Energy 82, pp. 1095–1097

Ineichen P. (2008c). Comparison and validation of three global-to-beam irradiance models against ground measurements. Sol. Energy , doi:10.1016/j.solener.2007.12.006

Ineichen P., Barroso C., Geiger B., Hollmann R., Marsouin A., Mueller R. (2009) Satellite Application Facilities irradiance products: hourly time step comparison and validation over Europe. International Journal of Remote Sensing, Vol. 30, No. 21, pp. 5549–5571

Ineichen P., Perez R. (2010). Aerosol quantification based on global irradiance. Solar paces proceedings, 21-24 sept. Perpignan, France. Available from: http://www.cuepe.ch/html/biblio/pdf/ineichen_2010_aerosol_quantification(SP).pdf

Ineichen P. (2010). Interannual variability and global irradiance evaluation. IEA Task XXXVI report. Available from:

http://www.cuepe.ch/html/biblio/pdf/ineichen_2010_05_interannual_variability.pdf

Kalnay E et al. (1996): The NMC/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77 (3), 437–472.

Kasten F. (1980) A simple parameterization of two pyrheliometric formulae for determining the Linke turbidity factor. Meteor. Rdsch. **33**, 124–127.

Kinne, S. et al (2005) An AeroCom initial assessment optical properties in aerosol component modules of global models Atmos. Chem. Phys. Discuss., **5**, 1-46.

Linke F. (1922) Transmissions-koeffizient und Trübungsfaktor. Beitr. Phys. Fr. Atmos. 10, pp 91-103.

Liu B.Y.H, Jordan R.C (1960) The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Volume 4, Issue 3, Pages 1-19

Lorenz E. (2007): Improved diffuse radiation model, MSG. Report for the EC-project PVSAT-2: Intelligent Performance Check of PV System Operation

Louche, A., Notton, G., Poggi, P. and Simonnot, G., (1991). Correlations for direct normal and global horizontal irradiation on a French Mediterranean site. Solar Energy. 46, 261-266.

Mueller R.W. et al, (2004) Rethinking satellite based solar irradiance modelling – The SOLIS clear sky module. Remote Sensing of Environment,**91**, 160-174.

Perez R., R. Seals, P. Ineichen, R. Stewart, D. Menicucci (1987) A New Simplified Version of the Perez Diffuse Irradiance Model for Tilted Surfaces. Description Performance Validation. Solar Energy, 39, 221-232.

Perez R., Ineichen P., Seals R., Zelenka A. (1990) *Making full use of the clearness index for parametrizing hourly insolation conditions*. Solar Energy, Vol. 45, N° 2, pp. 111-114.

Perez R., P. Ineichen, E. Maxwell, R. Seals, A. Zelenka (1992) Dynamic global to direct irradiance conversion models. ASHARE Trans. Res. Series, 1992, 354-369

Perez R., P. Ineichen, K. Moore, M. Kmiecik, C. Chain, R. George, F. Vignola (2002) A New. Operational Satellite-to-Irradiance Model, Solar Energy, 73, 2002, 307-317.

Polo, J., Zarzalejo, L. F., Martin, L., Navarro, A. A. and Marchante, R., (2009a) Estimation of daily Linke turbidity factor by using global irradiance measurements at solar noon. Solar Energy. 83, 1177-1185.

Polo, J., Zarzalejo, L. F., Salvador, P. and Ramírez, L. (2009b) Angstrom turbidity and ozone column estimations from spectral solar irradiance in a semi-desertic environment in Spain. Solar Energy. 83, 257-263.

Randel D., T. H Vonder Haar, M.A. Ringerrud, G. L. Stephens, T.J. Greenwald C.L. Combs (1996) A New Global Water Vapour Dataset. Bulletin of the American Meteorological Society, 77, 1233-1246.

Remund J. (2008), Updated Linke Turbidity and aerosol optical depth climatologies, IEA SHC Task 36 expert meeting, June 2008, Wels, Austria. Remund J. (2009): Aerosol optical depth and Linke turbidity climatology, Description for final report of IEA SHC Task 36, Meteotest Bern

Rigollier C., Bauer O., Wald L. (2000) On the Clear Sky Model of the ESRA - european Solar Radiation Atlas - with Respect to the Heliosat Method. Solar Energy **68** (1), 33-48.

Rigollier C., Lefèvre M, Wald L. (2004) The method heliosat-2 for deriving shortwave solar irradiance radiation from satellite imagesSolar Energy, 77(2), 159-169

Ruiz-Arias J.A., T. Cebecauer, J. Tovar-Pescador, M. Šúri, (2010). Spatial disaggregation of satellite-derived irradiance using a high resolution digital elevation model, accepted to Solar Energy.

Ruyter de Wildt M., G. Seiz, A. Gruen (2007) Operational snow mapping using multitemporal Meteosat SEVIRI imagery, Remote Sensing of Environment, 109, 29-41.

WMO Publication N° 8 (2008) Guide to Meteorological Instruments and Methods of Observation, ISBN 978-92-63-100085

Zarzalejo, L. F., Polo, J., Martín, L., Ramírez, L. and Espinar, B. (2009). A new statistical approach for deriving global solar radiation from satellite images. Solar Energy. 83, 480-484.

Zelenka A, Perez R, Seals R, Renne D (1999) Effective Accuracy of Satellite-Derived Hourly irradiance. Theor. Appl. Climatol. 62,199-207

Five satellite products deriving beam and global irradiance against ground data validation *P. Ineichen*

Annexe: figures in the following pages:

For the clear, intermediate and overcast sky conditions:

- First and second order statistics in absolute values for the global horizontal irradiance. The sites in grey are not taken into account in the overall statistics.
- First and second order statistics in relative values for the global horizontal irradiance. The sites in grey are not taken into account in the overall statistics.
- First and second order statistics in absolute values for the normal beam irradiance. The sites in grey are not taken into account in the overall statistics.
- First and second order statistics in relative values for the normal beam irradiance. The sites in grey are not taken into account in the overall statistics.

Global irradiance

Clear sky conditions: $0.65 < K'_t \le 1.00$

	sd		107 148	52	74 179	51	55	68	73	55	133		60		75 57	23	51	76	99	The		, UT -	SU%		ង ខ	10	15	ο σ	,	1	15	8	25	29	11		5 5	16	8 16	17	
IrSolAv	pqm		-34 -82	-40	-25 -186	ς.	-39	-28	-36	-43	00-		-29		11	01-	-28	-26	-25	ance.	IrSolAv	,	mba%		-16		မု	، م		φu	ې <i>ې</i>	-7	÷	-10	ς	,	2	ρφ	4φ	-7	
	\mathbb{R}^2		0.921 0.832	0.978	0.957 0.768	0.982	0.972	0.964	0.958	0.979	0.840		0.973		0.966	0.97.5	0.982	0.956		rradia		6	Υ.Υ.		0.921	0.978	0.957	0.768 0.982		0.972	0.958	0.979	0.846	0.847	0.973		0.966	0.956	0.982 0.956		
rtier)	ps	44 36	34	44	45 206	35	52 47	42	56	43 143	162	37	55	48	47	40	31	68	43	ntal i	rtier)	,01-1	%DS	8 10	۲ d	<u> </u> ∞	თ	74	13	ററ	۰ (9	53	34 9	, t	12	ω ο	ით	5 15	6	
oul (Dumo	pqm	-25 -28	02-	-14	12 -262	9	4 5	-33	4	-35	-139 -139	-15	-30	-24	-26	4 ÷	-31	-5	-16	iorizo	ol (Dumo	, of 1	%pgw	မှ မှ	0	ကို	2	-44		9 F		·γ		ور م	၊ ဖု	မု	φ,	- ņ	ις -	ΰ	
EnMetS	\mathbb{R}^2	0.985 0.990	0.935	0.985	0.986 0.675	0.992	0.980	0.987	0.979	0.988	0.774	0.992	0.977	0.979	0.986	0.966	0.994	0.971		bal h	EnMets	ć	Υ.Υ.	0.985 0.990	0.993	0.985	0.986	0.675	0.976	0.980	0.979 0.979	0.988	0.972	0.774	0.977	0.979	0.986	0.986	0.994 0.971		
is)	sd	42 36	<u>به</u>	4	4 0	37	51 42	40	52	41	150	39	55	43	49	40	59	62	41	ne glo	(s)	1011	%DS	8 10	9	2 00	œ	2000 2000	13	œσ	ء 10	9	<i>в</i> [0	;	തം	ათ	5 13	∞	
etSol (Sol	pqm	-23 -27	-101	2-	-301	18	95 19	-17	-14	-27	-185	-14	-28	-25	-48	د د د-	-34	-19	-16	for th	etSol (Sol	- H - H O (%pqw	မှ မှ	6	2 -	0	-20 •	-10		† 9	4	မု	، %	၊ ကု	φ	φ.	- v	φ4	ς	
EnMe	\mathbb{R}^2	0.986 0.990	0.994 0.948	0.985	0.987 0.685	0.991	0.977 0.984	0.988	0.980	0.989	0.790	0.992	0.978	0.983	0.985	0.986	0.994	0.972		alues	EnMe		Υ.	0.986 0.990	0.994	0.985	0.987	0.685 0.991	0.977	0.984	0.980	0.989	0.979	0.790	0.978	0.983	0.985	0.986	0.994 0.972		
	ps	55 57	42 109	60	67 168	52	د <i>ا</i> 63	59	70	59	83	55	63	58	60	50	45	74	57	ute va		, - 10,	%DS	13	o 70	- F	13	9 28	19	5 5	5 4	6	16	58	, t	4	6 5	13	7 16	1	
3Tier	pqm	-24 -36	-16	-25	တု အို	12	-43 6	-31	-22	έ, έ	6	4	-30	-27	ہ خ	 	-28	-14	-18	ibsolu tistics	3Tier) 0 1 1	mbd%	ဖု ထု	မိ ၂	ρ	-2	- - -	÷	9 r	- 7	-2	6- (- c	9 9 9	-7	ņ c	è o	4 ņ	4-	
	\mathbb{R}^2	0.976 0.976	0.988 0.915	0.972	0.966 0.831	0.983	0.968	0.972	0.964	0.975	0.870	0.985	0.971	0.968	0.979	0.972	0.987	0.963		s in a II stat		ć	Υ.	0.976 0.976	0.988	0.972	0.966	0.831 0.983	0.950	0.968	0.964	0.975	0.941	0.870 0.985	0.971	0.968	0.979	0.972	0.987 0.963		
	ps	50 47	4 4 64	48	51 88	43	60 52	56	64	41	8 8	51	43	68	57	4/	6 6	68	49	itistic		, - TO,	%DS	12	o (- 0	10	9 x	15	10	4 6	9	5	21 8	οœ	17	6 0	1 u	6 15	10	
liosat 3v3	pqm	-33 -34	-15	-24	- 24 -100	÷	-45 -23	-38	-46	-46	ې م	4	-34	-33	ကုန်	02-	6. 19.	-32	-23	er sta the c	liosat 3v3	10,	mpd%	-7	ကုရ	4	φ	21- C	, ,	ပုံစ	ဂု ကု	-7-	ų	φ.	. φ	φ	0 5	ţ ŀ-	-5	φ	
He	\mathbb{R}^2	0.983 0.986	0.991	0.987	0.983 0.932	0.990	0.985	0.978	0.972	0.988	0.946	0.990	0.988	0.968	0.985	0.904	0.993	0.973		d orde Int in	He	ć	Υ.	0.983 0.986	0.991	0.987	0.983	0.932 0.990	0.972	0.985	0.972	0.988	0.977	0.946	0.988	0.968	0.985	0.983	0.993 0.973		
	ps	50 46	32 76	52	46 105	42	58 44	48	55	38	66	34	38	41	48	4 4	33	60	43	econd		, - IO,	sd%	1 1	۲	റ	თ	° 0	14	o ;	;	9	13	5	2	10	ω ο	o 6	5 13	6	
solarGis	pqm	-17 -25	9	-	0 00-	13	0 4 ν.	-20	-13	φb	9	÷	-7	-16	-15		12	6-	6-	and s into a	SolarGis	, - H	%pgw	4 v	7	Ņ	0	۹ ۵	-10	7 7	t ?	۰ ۲		ہ <i>ر</i>	1 -	4	ကိုင	οņ	ήŅ	?	
.,	\mathbb{R}^2	0.980 0.985	0.993 0.954	0.980	0.983	0.988	0.970 0.982	0.982	0.977	0.989	0.921	0.994	0.989	0.985	0.985	0.981	0.993	0.975		first a aken		, ,	Υ.Υ.	0.980 0.985	0.993	0.980	0.983	0.930 0.988	0.970	0.982	0.977	0.989	0.957	0.921 0.994	0.989	0.985	0.985	0.981	0.993 0.975		
	qu	1374 1362	2522 1775	2027	1 464 1558	2022	874 1813	1542	1539	2285	1837	3154	2025	1545	1532	1551	2523	1351	35824	ons: " not ta		Ļ	q	1374 1362	2522 1775	2027	1464	1558 2022	874	1813 1542	1539	2285	1851	1837 3154	2025	1545	1532	1551	2523 1351	35824	
	G _h [w/m2]	420 459	481 517	549	508	539	402 512	456	504	662 707	333	621	536	400	578 514	410 460	626	465	498	onditi y are		10	GHI [W/m2]	420 459	481 517	549	508	600 539	402	512 466	504	662	535	481 621	536	400	578 514	460	626 465	498	
		Cabauw Camborne	Carpentras	El Saler	Geneva Jungfraujoch	Las Majadas	Lerwick Locarno	Nantes	Payerne	Sede Boger	Sonnblick	Tamanrasset	Thessaloniki	Toravere	Val d'Alinya	Wien	Yatir Forest	Zurich	All sites	Clear sky c sites in gre				Cabauw Camborne	Carpentras	El Saler	Geneva	Jungfraujoch I as Maiadas	Lerwick	Locarno	Paverne	Sede Boger	Sion	Sonnblick Tamanrasset	Thessaloniki	Toravere	Val d'Alinya	Wien	Yatir Forest Zurich	All sites	

Clear sky conditions: first and second order statistics in relative values for the global horizontal irradiance. The sites in grey are not taken into account in the overall statistics.

Tamanrasset	706	3154	0.904	-74	112	0.702	24	204	0.733	-41	186	0.756	-33	174	0.790	13	161			
l nessaloniki Toravere Val d'Alinva	582	1545	0.875	-84	119	0.740	-98	194	0.757	-78	167	0.815	-135	137	0.810	-83	145			
Vaulx-en-Velin	643	1468	0.869	-57	66	0.801	-71	120	0.796	6-	134	0.846	-33	105	0.866	-28	101	0.781	-74	136
Wien Yatir Forest Zurich	541	1551	0.760	-40	159	0.786	-56	151	0.721	-13	176	0.761	-75	154	0.768	9	155	0.707	-65	180
All sites	627	20352		-66	121		-61	163		-45	161		-66	138		-24	137		-83	179
Clear sky o	conditio	ons:	first a	and se	cond	ordei	r stat	istics	in ab	solut	e val	ues fc	or the	norr	nal be	am ii	rradia	ance.	The s	sites
in grey ar	e not ta	aken	into ;	accou	nt in	the o	veral	l stat	tistics											
				SolarGis		ĥ	liosat 3v3			3Tier		EnMe	tSol (Soli	s)	EnMetSo	ol (Dumor	tier)	-	SolAv	
	B _n [w/m2]	qu	R2	%pqm	%ps	R2	%pqm	%ps	R2	%pqm	%ps	R2	%pqm	sd%	R2	%pqw	sd%	R2	%pqw	%ps
Cabauw	530	1335	0.884	-12	21	0.829	-10	26	0.820	-7	27	0.867	-15	22	0.865	φ	22			
Camborne	556	1195	0.894	о	20	0.826	7	25	0.824	φ	26	0.881	-1	21	0.888	ę	20			
Carpentras	652	2522	0.901	-10	15 8	0.827	÷ -	22	0.870	ရာ ္	18	0.867	φĻ	18	0.868	ና 6	18	0.684	4	31 31
El Color	9/9	977 L	0.742	/ -	30	0.525	ņ	0.0	0.399	71-	49	0.423	G4-	43	0.463	7.7-	64	0.393	20	7.9
Geneva	631	1464	0.805	89	20	0.775	-13	22	0.750	ဂု	25	0.815	-7	20	0.834	e	19	0.724	-14	26
Jungfraujoch I as Maiadas	381	1558	0.393	95	117	0.325	54	117	0.443	70	116	0.286	-67	117	0.294	-34	121	0.343	12	119
Lerwick	491	790	0.839	-14	28	0.783	ę	35	0.712	φ	39	0.849	-20	27	0.858	-10	27			
Locarno																				
Nantes	595	1542	0.875	-14	18	0.781	-15	25	0.794	-13	24	0.868		18	0.861	-15	18	0.748	-14	28
Payerne	585	1539	0.709	φ	8	0.655	-12	33	0.648	- ;	36	0.662	ო (32	0.695	~ ~	31	0.629	10	35
Sion	101	1477	0.024	2	2	0.000	<u>ה</u>	70	070.0	+	02	0.122	0	2	0.704	7 -	<u>o</u>	0.540	+	C7
Sonnblick	518	1837	0.595	29	60	0.405	26	71	0.372	12	78	0.322	-61	70	0.299	-29	81	0.392	16	79
Tamanrasset	706	3154	0.904	-10	16	0.702	ю	29	0.733	မု	26	0.756	ŝ	25	0.790	2	23			
Thessaloniki																				
Toravere Val d'Alinva	582	1545	0.875	-14	21	0.740	-17	33	0.757	-13	29	0.815	-23	23	0.810	-14	25			
Vaulx-en-Velin	643	1468	0.869	6-	15	0.801	-11	19	0.796	5	21	0.846	ç.	16	0.866	4	16	0.781	-11	21

Clear sky conditions: first and second order statistics in relative values for the normal beam irradiance. The sites in not taken into account in the overall statistics. are grey

21 33

55

0.781 0.707

16 29

4 -

0.866 0.768

16 28

ο⁻4

0.846 0.761

21 32

~ ?

0.796 0.721

19 28

÷ ÷

0.801 0.786

15 29

οŗ Ի

0.869 0.760

1468 1551

643 541

Wien Yatir Forest

29

-13

22

4

52

-10

26

ŀ-

26

-10

19

-10

20352

627

All sites Zurich

Beam irradiance

Clear sky conditions

165 452

90

0.724 0.343

122 460 130

21

0.834

123 134

-43

-49

0.858

66-

168 206 171

-85 -60 102

0.748 0.629 0.540

107 184 134

-92 -92

0.861 0.695 0.704

108 189 126

-68 -20

202 348

-**91**

0.684

118 109 306 306

-19 149

0.865 0.888 0.868

115 114 115 288 288

-79 -63 -52 307

sd

pqm

22

50

pqm

R2

sd

R2

ß

R2

sd

R2

sd

R2

qu

B_n [w/m2]

3Tier pqm

Heliosat 3v3 pqm

SolarGis pqm

IrSolAv

EnMetSol (Dumortier)

EnMetSol (Solis) pqm $0.65 < K'_{t} \le 1.00$

ntermediate sky conditions: first and second order statistics in absolute values for the global horizontal irradiance. 84 91 92 86 116 143 90 101 108 sd% 137 141 87 95 95 189 93 60 95 33 34 37 37 37 52 64 sd $\begin{array}{c} \mathbf{51}\\ \mathbf{60}\\ \mathbf{29}\\ \mathbf{36}\\ \mathbf{32}\\ \mathbf{$ IrSolAv IrSolAv %pqm pqm 19 88 24 19 3 0.884 0.848 0.862 0.855 0.867 0.900 0.900 0.838 0.898 0.868 0.779 0.868 0.893 0.779 0.893 0.898 0.901 0.896 0.896 0.771 0.901 ъ2 ß $\begin{smallmatrix} 83 \\ 669 \\ 655 \\ 656$ sd% 5 8 4 EnMetSol (Dumortier) 50 EnMetSol (Dumortier) 5 %pqu pqm 33 -10 33 19 0 2 8 ର ଜ - - 15 6 6 23 23 13 20 2 = 9 3 ∾ 2 0 0.938 0.962 0.957 0.944 0.950 0.940 0.946 0.940 0.968 0.958 0.942 0.942 0.968 0.963 0.943 0.958 0.949 0.938 0.962 0.973 0.968 0.963 0.965 0.943 0.958 0.949 0.973 0.965 0.957 \mathbb{R}^2 22 09 sd% $\begin{array}{c} \mathbf{52} \mathbf{52} \mathbf{52} \mathbf{52} \mathbf{53} \mathbf{53} \mathbf{53} \mathbf{54} \mathbf{55} \mathbf{55}$ sd EnMetSol (Solis) EnMetSol (Solis) %pqu pqm 82 13 3 20 <u>9</u> 22 <u> 2</u> 20070 0.956 0.941 0.939 0.939 0.958 0.958 0.943 0.942 0.958 0.947 0.938 0.963 0.973 0.957 0.957 0.957 0.947 0.938 0.963 0.973 0.957 0.957 0.953 0.970 0.962 0.964 0.970 0.962 0.964 0.942 0.958 \mathbb{R}^2 R2 are not taken into account in the overall statistics. %ps 80 23 27 29 26 31 3 3Tier pqm 12 3Tier %pqu 2 ∽ 20 2 2 0.919 0.913 0.919 0.913 0.929 0.908 0.900 0.870 0.928 0.928 0.904 0.878 $\begin{array}{c} 0.921 \\ 0.921 \\ 0.877 \\ 0.894 \\ 0.923 \\ 0.920 \\ 0.865 \\ 0.884 \\ 0.884 \end{array}$ 0.908 0.898 0.928 0.928 0.904 0.878 0.905 0.905 0.929 0.900 0.870 \mathbb{R}^2 R2 %ps sd 0 8 8 5 5 4 000 33 108 77 77 77 123 64 64 73 73 72 100 75 24 23 26 222 8 2 5 ž Heliosat 3v3 Heliosat 3v3 %pqm pqm 115 114 125 125 125 15 6 22 37 22 00 23 95 0 0.950 0.945 0.946 0.957 0.957 0.937 0.949 0.940 0.951 0.963 0.966 0.953 0.952 0.962 0.951 0.963 0.966 0.953 0.957 0.937 0.958 0.938 0.933 0.946 0.964 0.957 0.937 0.958 0.938 22 52 sd% 82 67 146 57 55 55 75 75 75 ß 282 67 25 22 2 2 2 8 2 2 2 SolarGis SolarGis %pqm pqm 14 -7 -23 23 19 16 12 9 N N o, 0 7 2 8 Ŧ 0.851 0.919 0.935 0.919 0.935 0.925 0.933 0.944 0.958 0.958 0.942 0.931 0.954 0.941 0.941 0.955 0.955 0.931 0.899 0.809 0.950 0.941 0.937 0.925 0.933 0.944 0.958 0.958 0.942 0.931 0.937 0.950 0.941 0.937 R2 Ъ2 24096 083 208 1036 1307 1307 199 1595 1398 1398 1398 1338 915 1036 1368 637 637 1610 1570 505 505 1578 1546 986 1208 1036 1307 1199 1595 522 522 1578 1546 986 ę qu grey [W/m²] G_h [W/m²] 292 234 258 264 264 2247 2247 224 313 260 260 308 308 266 254 255 255 255 249 252 249 267 235 304 266 252 249 267 235 304 266 292 234 258 264 274 274 224 ອ້ .⊆ sites i Tamanrasset Thessaloniki Toravere Val d'Alinya Vaulx-en-Velin Payerne Sede Boqer as Majadas as Majadas /atir Forest Camborne Carpentras Carpentras Camborne Cabauw Cabauw Geneva -ocarno Geneva El Saler -erwick El Saler -ocarno All sites Nantes Vantes _erwick Zurich he P Nien Sion

ntermediate sky conditions: first and second order statistics in relative values for the global horizontal irradiance sites in grey are not taken into account in the overall statistics The

35

ი

0.900

2

0.957 0.940 0.946 0.940

3 22

8

35 29 33 9 24 22 39

200

З က္ 4 ω - o o ß

۱O

33

0.933 0.946 0.964 0.962

33 23

0.867 0.900 0.771

0.944 0.950

∞ ⊆ ∽

0.957

46 40 42 42

ω 4

0.884 0.848 0.862 0.855

o 2 2 7 7

0.968

0 2 2 0 9

0.956 0.942 0.941 0.939 0.968 0.958 0.958 0.943

÷ ₩ ∞

0.921 0.921 0.894 0.894 0.923 0.920 0.865 0.884

37

0.945 0.940

0.9540.9410.9410.9230.9550.9310.8990.901

915 1036 1368 637 637 1610 1570 505 505

313 260 233 308 308 266 254 325 259 259

Val d'Alinya Vaulx-en-Velin

Toravere

Wien Yatir Forest

Tamanrasset Thessaloniki

Payerne Sede Boqer

Sion

0.950

0.958 0.942 0.908

8 ∞

0.838

53

5

25

œ

24

œ

32

ŝ

30

თ

27

24096

249

All sites

Zurich

2 00

0.957 0.937 0.949 0.910

7 0 1

Global irradiance

Intermediate sky conditions $0.30 < K'_{t} \leq 0.65$

Beam irradiance

Intermediate sky conditions $0.30 < K'_t \le 0.65$

				SolarGis		He	iosat 3v3			3Tier		EnMe	etSol (Sol	is)	EnMetS	ol (Dumo	rtier)		rSolAv	
	B _n [W/m ²]	qu	R2	pqm	sd	R2	pqm	sd	R2	pqm	ps	R2	pqm	sd	R2	pqm	sd	R2	pqm	sd
Cabauw Camborne Carpentras Davos	122 104 143 76	1568 1293 986 1571	0.764 0.816 0.722 0.561	14 54 74	90 93 122 161	0.680 0.759 0.729 0.566	97 150 179 245	126 120 141 162	0.577 0.738 0.679 0.557	68 77 92 149	148 130 152 191	0.772 0.815 0.782 0.688	38 66 109 24	89 89 90	0.754 0.810 0.779 0.675	45 77 136 81	97 101 123	0.419 0.474	159 124	240 197
El Saler Geneva Jungfraujoch	153 14	1208 1220	0.725 0.269	60 232	129 243	0.735 0.117	106 461	128 256	0.615 0.203	88 366	179 322	0.791 0.250	66 64	104	0.805 0.270	93 138	115 185	0.651 0.160	85 215	155 251
Lerwick	82	1230	0.673	52	105	0.570	161	162	0.513	124	175	0.692	40	87	0.662	51	101			
Payerne Sede Boger	163 111 272	1595 1398 450	0.798 0.675 0.659	0 66 37	91 123 142	0.646 0.620 0.355	88 98 10	152 138 200	0.684 0.544 0.520	22 108 40	134 178 185	0.840 0.711 0.541	27 76 21	83 110 160	0.836 0.717 0.515	14 104 31	82 124 170	0.646 0.531 0.315	46 89 78	154 158 222
Sonnblick Tamanrasset Theocolomitei	32 124	1570 915	0.401 0.721	216 115	250 122	0.402 0.578	419 312	242 212	0.395 0.641	308 184	293 195	0.451 0.606	57 213	112 179	0.490 0.637	148 247	189 173	0.391	262	290
Toravere	131	1368	0.733	ю	108	0.726	106	148	0.411	75	193	0.633	21	125	0.694	38	122			
val dAllitya Vaulx-en-Velin Wien Yatir Forest Zurich	206 152	1592 1570	0.802 0.748	27 24	110 114	0.704 0.748	79 74	139 127	0.699 0.674	64 61	159 149	0.852 0.804	45 26	95 96	0.860 0.792	44 57	95 109	0.653 0.633	45 51	154 155
All sites	142	15173		40	110		119	146		81	163		58	108		72	114		73	171
Intermedia The sites in	ate sky n grey	/ con are	dition not ta	is: firs aken i solargis	st and nto a	d seco	nd o nt in .	the o	statis verall	tics i stat	n abs istics	solute	valu	es fo	f the		al be	am ir	radia	nce.
	B _n [W/m ²]	qu	R2	%pqm	%ps	R2	mbd%	%ps	R2	%pqm	%ps	R2	mbd%	sd%	R2	mbd%	sd%	R2	%pqm	%ps
Cabauw Camborne Carpentras Davos	122 104 143 76	1568 1293 986 1571	0.764 0.816 0.722 0.561	12 52 146	74 90 85 211	0.680 0.759 0.729 0.566	80 144 322	104 115 98 212	0.577 0.738 0.679 0.557	56 74 64 195	121 125 106 250	0.772 0.815 0.782 0.688	31 63 22	73 86 78 118	0.754 0.810 0.779 0.675	37 74 94 106	80 97 86 167	0.419 0.474	111 163	167 259
El Saler Geneva	153	1208	0.725	39 1660	84 1742	0.735	69 33.01	84	0.615	57 2624	117	0.791	43 164	68 700	0.805	09	75	0.651	56 1640	101
Las Majadas Lerwick	82	1230	0.673	64	129	0.570	197	198	0.513	151	214	0.692	49	107	0.662	62	124		1	
Locarno Nantes Payerne Sede Boqer	163 111 272	1595 1398 450	0.798 0.675 0.659	0 60 4	56 111 52	0.646 0.620 0.355	54 88 4	93 124 74	0.684 0.544 0.520	13 97 15	82 160 68	0.840 0.711 0.541	17 68 8	51 99 59	0.836 0.717 0.515	9 33 11	50 111 62	0.646 0.531 0.315	28 80 29	94 142 82
Sion Sonnblick Tamanrasset	32 124	1570 915	0.401 0.721	680 93	786 99	0.402 0.578	1317 252	759 171	0.395 0.641	969 149	920 158	0.451 0.606	178 172	352 145	0.490 0.637	466 200	594 140	0.391	823	910
Toravere Vol d'Alinvo	131	1368	0.733	7	82	0.726	81	113	0.411	57	147	0.633	16	96	0.694	29	93			
Vaulx-en-Velin Wien Yatir Forest Zurich	206 152	1592 1570	0.802 0.748	13 16	53 75	0.704 0.748	38 49	67 84	0.699 0.674	31 40	77 98	0.852 0.804	22	46 63	0.860 0.792	38 23	46 72	0.653 0.633	22 34	75 102
All sites	142	15173		28	78		84	103		57	115		41	76		51	81		52	120
Intermedia	ite sky	conc	dition	s: firs:	t and	secol	nd or	der st	atisti	cs in	relati	ve va	lues f	or th	e nori	nal b	eam	irradi	ance.	The

sites in grey are not taken into account in the overall statistics.

			5,	SolarGis		Heli	iosat 3v3			3Tier		EnMe	tSol (Soli	(s)	EnMetS	ol (Dumo	ortier)		rSolAv	
	G_h [W/m ²]	qu	R²	pqm	sd	\mathbb{R}^2	pqm	sd	\mathbb{R}^2	pqm	sd	\mathbb{R}^2	pqm	ps	\mathbb{R}^2	pqm	sd	\mathbb{R}^2	pqm	ps
Cabauw	62	1201	0.879	6	32	0.852	25	48	0.820	38	44	0.907	18	31	0.904	17	31			
Camborne	91	1179	0.866	8	39	0.897	39	59	0.848	31	45	0.898	20	37	0.900	20	37			
Carpentras	77	485	0.803	20	50	0.906	52	52	0.748	32	50	0.879	35	42	0.881	35	42	0.673	71	100
Davos	66	854	0.704	24	72	0.895	128	108	0.775	51	66	0.798	14	53	0.791	25	57	0.485	50	107
El Saler	86	490	0.697	27	68	0.803	41	63	0.627	57	91	0.789	42	61	0.789	40	60	0.594	40	76
Geneva	89	950	0.829	21	46	0.893	23	44	0.803	39	53	0.870	26	40	0.871	27	41	0.653	34	75
Jungfraujoch	105	533	0.632	17	129	0.900	193	155	0.668	148	129	0.611	27	85	0.594	47	98	0.467	102	179
Las Majadas	100	451	0.606	27	17	0.821	89	78	0.561	62	96	0.749	56	72	0.752	52	70	0.647	49	93
Lerwick	85	1125	0.868	27	41	0.873	46	71	0.792	48	55	0.834	17	41	0.839	16	41			
Locarno	64	1172	0.850	35	48	0.848	71	76	0.782	63	69	0.878	36	43	0.877	35	43	0.727	46	73
Nantes	96	1063	0.856	ю	37	0.817	45	75	0.837	25	43	0.907	18	32	0.909	14	31	0.650	26	68
Payerne	88	1068	0.813	13	45	0.831	14	51	0.768	37	55	0.881	22	38	0.884	23	38	0.654	34	73
Sede Boger	118	83	0.579	17	86	0.787	53	89	0.437	89	148	0.697	33	73	0.698	27	71	0.443	24	114
Sion	81	992	0.690	22	67	0.869	114	95	0.800	38	57	0.840	28	49	0.845	26	48	0.555	46	88
Sonnblick	138	526	0.735	71	137	0.747	192	161	0.705	105	148	0.697	32	113	0.686	61	129	0.578	103	178
Tamanrasset	114	224	0.678	33	87	0.865	137	122	0.717	84	112	0.754	06	150	0.754	90	149			
Thessaloniki	91	614	0.751	16	59	0.756	с	61	0.673	42	78	0.774	24	56	0.772	23	56	0.612	39	89
Toravere	29	871	0.830	22	49	0.870	50	75	0.668	47	56	0.818	15	40	0.825	15	39			
Val d'Alinya	97	330	0.762	56	91	0.803	185	143	0.603	101	126	0.791	73	85	0.790	80	06	0.609	111	146
Vaulx-en-Velin	86	1063	0.826	20	45	0.854	35	53	0.789	40	55	0.869	24	40	0.871	20	40	0.627	34	77
Wien	06	1082	0.844	7	40	0.848	9	48	0.811	27	45	0.878	10	36	0.877	12	36	0.637	25	73
Yatir Forest	123	193	0.714	37	93	0.858	81	88	0.624	75	105	0.736	43	77	0.739	40	77	0.574	41	109
Zurich	91	1281	0.760	23	58	0.785	30	74	0.740	50	99	0.769	26	60	0.770	29	63	0.619	39	85
Allsites	82	15917		18	49		39	65		42	62		25	48		24	48		36	79
Overcast s	200	dition	oc fire	t and	SOCS		dar ct	tatict	loc in	Code	li ito v		s for t	lo oq	Ichal	orizo	letuc	irradi	ouro	The
				statio	סטרו			ומוואו		auso		valud		מ	Innal		חוומו	III au	מווכם.	
sites in gr	ey are	not t	aken	into a	ccon	Int in	the o'	veral	ll stat	istics										
				SolarGis		Heli	iosat 3v3	-		3Tier		EnMe	itSol (Soli	is)	EnMetS	ound) lo:	ortier)		rSolAv	

				SolarGis		н	leliosat 3v	3		3Tier		En	MetSol (S	olis)	EnMe	tSol (Du	mortier)		IrSolAv	
	G_h [W/m ²]	qu	R2	%pqm	%ps	R2	%pqm	%ps	R2	%pqm	%ps	R2	%pqm	%ps	R2	%pqm	%ps	R2	%pqm	%ps
abauw	62	1201	0.879	12	41	0.852	31	60	0.820	48	56	206.0	23	39	0.904	21	40			
amborne	91	1179	0.866	6	43	0.897	43	65	0.848	34	49	0.898	22	41	0.900	22	40			
arpentras	77	485	0.803	26	65	0.906	67	68	0.748	41	65	0.879	46	54	0.881	45	55	0.673	92	130
Javos	66	854	0.704	24	72	0.895	129	109	0.775	51	67	0.798	14	53	0.791	25	22	0.485	51	107
El Saler	86	490	0.697	31	62	0.803	48	74	0.627	99	106	0.789	49	71	0.789	47	71	0.594	47	89
seneva	89	950	0.829	24	52	0.893	26	49	0.803	43	59	0.870	29	45	0.871	30	46	0.653	38	84
ungfraujoch	105	533	0.632	73	123	0.900	184	147	0.668	141	122	0.611	25	81	0.594	44	93	0.467	97	170
.as Majadas	100	451	0.606	27	12	0.821	89	78	0.561	62	96	0.749	56	72	0.752	52	71	0.647	49	93
.erwick	85	1125	0.868	31	49	0.873	53	83	0.792	56	64	0.834	20	48	0.839	19	48			
ocarno	64	1172	0.850	55	75	0.848	111	119	0.782	66	107	0.878	56	67	0.877	54	99	0.727	72	114
lantes	96	1063	0.856	ი	38	0.817	46	78	0.837	26	45	0.907	19	34	0.909	14	32	0.650	27	71
ayerne	88	1068	0.813	15	51	0.831	16	58	0.768	42	63	0.881	25	43	0.884	26	44	0.654	39	83
sede Boger	118	83	0.579	14	73	0.787	45	75	0.437	76	125	0.697	28	62	0.698	23	60	0.443	20	96
Sion	81	992	069.0	28	82	0.869	141	118	0.800	47	7	0.840	35	61	0.845	31	60	0.555	56	109
Sonnblick	138	526	0.735	52	66	0.747	139	117	0.705	277	108	0.697	23	82	0.686	44	94	0.578	75	129
amanrasset	114	224	0.678	29	76	0.865	120	107	0.717	73	86	0.754	79	131	0.754	78	131			
Thessaloniki	91	614	0.751	18	65	0.756	ო	68	0.673	46	87	0.774	26	62	0.772	25	62	0.612	43	98
oravere	79	871	0.830	28	62	0.870	63	96	0.668	60	71	0.818	19	50	0.825	19	50			
al d'Alinya /	97	330	0.762	58	92	0.803	192	148	0.603	105	131	0.791	75	88	0.790	83	93	0.609	115	151
/aulx-en-Velin	86	1063	0.826	24	53	0.854	41	62	0.789	47	64	0.869	28	47	0.871	24	46	0.627	39	89
Vien	90	1082	0.844	8	45	0.848	7	53	0.811	30	20	0.878	12	40	0.877	14	41	0.637	28	82
atir Forest	123	193	0.714	30	76	0.858	99	72	0.624	61	85	0.736	35	63	0.739	33	62	0.574	33	88
urich.	91	1281	0.760	26	63	0.785	33	82	0.740	55	72	0.769	29	99	0.770	31	69	0.619	42	93
vII sites	82	15917		22	60		48	80		51	75		30	58		29	59		63	138

Overcast sky conditions: first and second order statistics in relative values for the global horizontal irradiance. The sites in grey are not taken into account in the overall statistics.

Global irradiance

Overcast sky conditions $0.00 < K'_t \le 0.30$