solar neighborhoods: strategies and application case studies **IEA SHC SEMINAR**

IEA SHC Task 63 Solar Neighborhood Planning

Organized by Caroline Hachem-Vermette, PhD (Subtask A Leader) Maria Wall, PhD

Edited by

Caroline Hachem-Vermette, PhD Maria Wall, PhD Karly Do

University of Calgary

School of Architecture, Planning, and Landscape

UNIVERSITY OF CALGARY SCHOOL OF ARCHITECTURE, PLANNING AND LANDSCAPE Solar Energy and Community Design Lab

(SECDL)

SSHRC CRSH Heli

Department of Civil and Environmental Engineering

The seminar was organized as part of IEA SHC Task traditional planning of communities, to incorporate 63(Solar Neighborhood Planning), Subtask A deliverables. It aimed to bring academic and professional knowledge, of designing sustainable communities with high life quality. In addition, it introduced and demonstrated the use of modeling tools in the design process to achieve specific performance goals, at urban and buildings levels.

International speakers from Australia, Switzerland, Italy, Norway, Denmark and Sweden presented alongside national speakers from various governmental research agencies and Canadian industry. The audience of the seminar included professionals such as architects and urban planners, city and municipality representatives, in addition to students and academic staff.

This public seminar presenting international case studies and demonstration projects of sustainable urban communities, brought international knowledge and expertise to local professionals such as architects and urban planners. Such knowledge can assist in changing the methods utilized in

trade-offs of various environmental considerations.

The seminar was funded by SSHRC connection grant, and in-kind contribution of Lund University (Sweden), Norwegian University of Science and Technology (Trondheim, Norway), and SAPL (University of Calgary).

The seminar was conducted in hybrid mode (in person presentations and online via ZOOM).

Introduction to the IEA SHC Task 63 Seminar Caroline Hachem-Vermette	
Introduction to IEA SHC Task 63: Solar Neighborhood Planning Maria Wall	
Solar Daylight in Urban Planning Olaf Bruun Jørgensen	
Solar Digitization Techniques to Enhance Optimal Exploitation of Solar Energy in the Nordics Gabriele Lobaccaro and Mattia Manni	74
Australian Insights and Case Study Examples for Solar Neighborhood Planning Mark Snow	116
Solar Energy and Daylighting in Swedish Case Studies Alejandro Pacheco Diéguez	
How to Boost Major Solar Projects in Building Environment: The Example of a Village in Geneva, Switzerland Gilles Desthieux	
Sustainable and Climate Resilient Solar Neighborhoods Silvia Croce	
Solar-Driven Low-Carbon Communities: Drake Landing and Beyond Lucio Mesquita	
BIPV, Building-Grid Interaction and Dynamic Pricing of Electricity Andreas Athienitis	
Solar: A Key Ingredient of Holistic Approach to Sustainable Community Design - London, Ontario Case Studies	

Milfred Hammerbacher

Dr. Maria Wall

Dr. Maria Wall is associate professor at the since interdisciplinary teamwork is needed Division of Energy and Building Design, Lund University, Sweden. Energy aspects related to buildings have always fascinated her. She has a MSc in Architecture and a PhD in Engineering. Her research includes different aspects related to energy-efficient buildings as well as solar energy strategies. She is presently leader of the international research project IEA SHC Task 63 on Solar Neighborhood Planning (2019-2023), including both passive and active solar energy strategies. She was leader of the SHC Task 41 on Solar Energy and Architecture (2009-2012), and then leader for the SHC Task 51 on Solar Energy in Urban Planning (2013-2018).

She was the main initiator and developer, and was the Director of the 2-year Master's Programme in Energy-efficient and Environmental Building Design at Lund University, during 2012-2022. This programme is enrolling international different students from backgrounds, both in architecture and in engineering,

when designing sustainable buildings and neighbourhoods.

Dr. Caroline Hachem-Vermette

An architect by training and by profession, Dr. Caroline Hachem-Vermette has two master's degrees in architecture, and an additional master's, and PhD degrees in Building Engineering from Concordia University. Dr. Hachem-Vermette research program is highly multidisciplinary, involving such diverse disciplines as architecture, urban planning, and building engineering.

Her research area includes the investigations of multifunctional energy-efficient, resilient neighborhood patterns, solar potential and energy implications of building shapes, building envelope design, developing multifunctional facades for multistory buildings, and others. Her research is multidisciplinary, it plays a bridging role between building engineering and architectural and urban design. Her current research program aims at developing concepts and strategies for the design of sustainable and climate resilient, self-sufficient, smart communities and urban developments. A part of this research program concentrates on the design of urban green infrastructure that aims at improving the health and wellbeing of urban inhabitants, especially in times of stresses (including pandemics).

She is currently leading a subtask on developing strategies for net-zero energy solar communities, within the International Agency Energy Task (IEA) 63- Planning Solar Neighborhoods. She was also an expert on 2 others IEA SHC tasks on solar energy in architecture and urban planning. She is widely published on the topic of energy efficiency and solar energy, including a book (with Springer) on designing solar buildings and neighborhoods. Dr. Hachem-Vermette is a recipient of a number of awards including the 2019 Peak Scholar Award, 2016 sustainability award, e-sim/ IBPSA award for innovation in modelling, and Hangai prize for young researchers.

Dr. Olaf Bruun Jørgensen

Dr. Olaf Bruun Jørgensen has more than 30 years of experience in energy engineering. He has over 20 years' experience as project leader and strong expertise in sustainable and energy efficient R&D projects. He has specialized in optimization, design and implementation of active and passive solar energy systems in buildings.

Moreover, Olaf has extensive experience with the use of the Integrated Energy Design process which ensures a positive relation between form function, architecture, and sustainability through a close dialogue with all stakeholders involved in the construction project.

Previous projects include social housing, ecohousing and urban planning projects in Denmark and Europe. His experiences include working with national regulations and international frameworks (namely the SDGs). His clients include private and public organisations.

KERS

Alejandro Pacheco Diéguez

Alejandro Pacheco Diéguez has been working since 2014 as an architect specialized in digital tools applied to environmental design.

Alejandro's background includes optimization of building design and urban planning for environmental aspects such as energy use, daylighting, microclimate or environmental impact. Since 2019, he focuses on the development of accessible digital tools to evaluate various environmental performance aspects during building design in the early stages.

SPEAKERS

Dr. Mark Snow

Dr. Mark Snow is a leading international expert on Building integrated PV with over 20 years of expertise. He has produced best practice BIPV guidelines for the Australian Government, developed solar design knowledge products for the Australian Institute of Architects and provided comprehensive state of the art reports for international governments on urban solar applications - including on PV as a building material for the recently completed Australian Cooperative Research Centre (CRC) for Low Carbon Living.

Dr. Snow has also worked extensively as an Australian representative on numerous International Energy Agency (IEA) tasks on Solar Energy programs including Solar Heating and Cooling Task 63 on Solar Neighbourhood Planning as well as co-authoring an internationally acclaimed book on designing with Solar Power. 11

KERS

Dr. Gabriele Lobaccaro

Dr. Gabriele Lobaccaro is Associate Professor and Coordinator of Building and Technology Research Group at the Department of Civil and Environmental Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway. He is co-leader of Subtask D on "Case studies" in the IEA SHC Task 63 "Solar Neighborhood Planning".

His research focuses on solar energy design and digitalization, environmental analysis, energy and building technology, sustainable and resilient built environment.

Gabriele is currently the project manager and primary investigator of the research project NFR-FRIPRO FRINATEK – HELIOS - enHancing optimal ExpLoitatIOn of Solar energy in Nordic cities through digitalization of built environment. The project is supported by the Research Council of Norway (project. No. 324243).

SPEAKERS

Dr. Mattia Manni

Dr. Mattia Manni is a Postdoc Fellow at the Department of Civil and Environmental Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway. He is co-leader of Subtask D "Case studies" in the IEA SHC Task 63 "Solar Neighborhood Planning".

His research core concerns solar energy digitalization, combining experimental monitoring activities with numerical solar and energy analyses.

Mattia is currently leading the WP1 - Modelling and simulation and WP2 - Experiment and monitoring of the research project HELIOS - enHancing optimal ExpLoitatIOn of Solar energy in Nordic cities through digitalization of built environment. The project is supported by the Research Council of Norway (project. No. 324243).

Dr. Gilles Desthieux

Dr. Gilles Desthieux is an associate professor at the Geneva Institute of Landscape, Engineering and Architecture (HES-hepia) and a senior consultant in urban energy planning in the company Amstein+Walthert Genève.

He holds an MA in environmental engineering and sciences and a PhD from the Swiss Federal Institute of Technology Lausanne (EPFL). His expertise deals with integrated urban and energy planning, development of GIS tools for energy mapping and planning, 3D urban modeling for environmental assessment – solar energy.

Dr. Silvia Croce

Dr. Silvia Croce is a Post-Doc researcher at the Institute for Renewable Energy, Eurac Research (Italy). She is a building engineer - architect by training, and holds a PhD in Engineering at the University of Padova.

Her research work aims at gaining insights into solutions for an integrated design of the urban built and natural environment, with focus on outdoor microclimate, thermal comfort, energy savings and renewable energy production. At the same time, it intends to raise awareness on the interlinkages of those topics and to activate different actors in developing integrated and systemic solutions.

Sheisco-leadingtheH2O2OprojectJUSTNature, and active in several European projects. She was actively involved in IEA SHC Task 51 "Solar energy in urban planning", and currently is coleading sub-task B "Economic strategies and stakeholder engagement" of IEA SHC Task 63 "Solar neighborhoods planning".

Dr. Lucio Mesquita

Dr. Lucio Mesquita is a Senior Research International Engineer at CanmetENERGY-Ottawa/ Natural Resources Canada. He has over 30 years of experience and skills in the research, design, and testing of solar thermal and thermal storage products and systems for heating and cooling applications in industrial, commercial and residential markets in several countries including Canada, Brazil, China, and the United States. He also has experience with sorption process through his doctoral research on the development of liquid-desiccant components and systems.

Dr. Mesquita work is currently focused on sustainable community energy systems and thermal storage technologies. He holds a PhD in Mechanical Engineering from Queen's University and a Bachelor of Science in Mechanical Engineering from the Federal University of Minas Gerais (UFMG-Brazil).

Dr. Mesquita is actively involved with

Energy Storage.

Energy Agency Technical Collaboration Programmes on Solar Heating and Cooling, District Heating and Cooling, and

Dr. Andreas K. Athienitis

Dr. Andreas K. Athienitis is a Professor of Building Engineering and Director of the Centre for Zero Energy Building Studies that he founded at Concordia University.

He obtained a PhD in Mechanical Engineering from the University of Waterloo (1985). He holds the NSERC/Hydro Québec Industrial Research Chair "Optimized Operation and Energy Efficiency: Towards High Performance Buildings" and a Concordia University Research Chair in Solar Energy. He is internationally recognized and a leader in smart net-zero energy solar buildings - a Fellow of the Canadian Academy of Engineering, Fellow of IBPSA and Fellow of ASHRAE. He led as Principal Investigator the NSERC Smart Net-zero Energy Buildings Strategic Research Network and the NSERC Solar Buildings Research Network with over 30 researchers from 15 Canadian Universities and about 30 industry and public sector partners.

He was profiled as one of 25 top innovators in Québec by Actualité Magazine. He has published over 300 refereed papers, including eight that received best paper awards, and several books. He played a leading role in the conception and realization of several awardwinning innovative buildings such as the Varennes net-zero energy Library, EcoTerra House and his own award-winning solar home. He currently co-chairs the Canadian Academy of Engineering Roadmap to Resilient, Ultra-Low Energy Built Environment with Deep Integration of Renewables.

Milfred Hammerbacher

Milfred Hammerbacher has lived and managed businesses in four countries with 30 plus years of photovoltaic and energy experience.

As co- founder and CEO of S2E Technologies, Inc, his team built the largest solar factory in Canada at the time, partnered with Samsung to build the largest solar farms in Canada at the time, and developed or supplied over 800MW's of solar projects operating today. 9 years ago, the company began a transition into sustainable community and Building development, with projects in London, Ontario and Punta De Mita, Mexico.

SPEAKERS

Introduction to the IEA SHC Task 63 Seminar

Caroline Hachem-Vermette

The presentation identifies the objectives of the IEA SHC Task 63 Seminar (namely, to bring together international perspectives in planning solar neighborhoods and highlighting the main considerations in designing sustainable and environmentally oriented communities), provides a schedule for the day, and introduces the speakers presenting at the seminar.

Organized by: Caroline Hachem-Vermette, PhD, Associate Prof, University of Calgary Solar Energy and Community Design Lab (SECDL) IEA SHC Task 63, Subtask A Leader

CITY BUILDING DESIGN LAB UNIVERSITY OF CALGARY

23 SEPTEMBER 2022 9AM - 4PM

Strategies and Application Case Studies

Technology Collaboration Programme by lea

SEMINAR ON SOLAR NEIGHBORHOODS

鱸

Objectives

This seminar aims at:

- Bringing together international and national perspectives in planning solar neighborhoods
- Highlighting main considerations in designing sustainable and environmentally oriented communities.

UNIVERSITY OF Solar Energy and Community Design Lab

(SECDL)

TERNATIONAL ENERGY AGENCY

08:30 - 08:45	REGISTRATION		11:45 - 13:00	LUNCH
8:45 - 09:00	MARIA WALL CAROLINE HACHEM-VERMETTE WELCOME NOTES	RNOO	13:00 - 13:30	SILVIA CROCE, EUR RESEARCH (ITALY) SUSTAINABLE AND
00 - 09:30	OLAF BRUUN JØRGENSEN (DENMARK)	3		NEIGHBORHOODS
	SOLAR DAYLIGHT IN URBAN PLANNING (ZOOM)		13:30 - 14:00	LUCIO MESQUITA, N (CANADA)
09:30 - 10:00	GABRIELE LOBACCARO MATTIA MANNI (NORWAY)			SOLAR-DRIVEN LOW COMMUNITIES: DRA AND BEYOND (ZOOI
	SOLAR DIGITIZATION TECHNIQUES TO ENHANCE OPTIMAL EXPLOITATION OF SOLAR ENERGY IN THE NORDICS		14:00 - 15:00	ANDREAS ATHIENIT (CONCORDIA UNIVE CANADA)
00 - 10:15	COFFEE BREAK			BIPV, BUILDING-GRI INTERACTION AND I PRICING OF ELECTR
10:15 - 10:45	MARK SNOW (AUSTRALIA) AUSTRALIAN INSIGHTS AND CASE STUDY EXAMPLES FOR		15:00 - 15:15	COFFEE BREAK
	SOLAR NEIGHBORHOOD PLANNING		15:15 - 15:45	MILFRED HAMMERB
45 - 11:15	ALEJANDRO PACHECO DIÉGUEZ (SWEDEN) SOLAR ENERGY AND DAYLIGHTING IN SWEDISH CASE STUDIES			SOLAR: A KEY INGR OF HOLISTIC APPRO SUSTAINABLE COMM DESIGN - LONDON, CASE STUDIES (ZOC
11:15 - 11:45	GILLES DESTHIEUX (SWITZERLAND)		15:45 - 16:00	CONCLUDING REMA
	HOW TO BOOST MAJOR SOLAR PROJECTS IN BUILDING ENVIRONMENT: THE EXAMPLE OF A VILLAGE IN GENEVA,		All times are	orted in Colorany level time

3

CE, EURAC

ESILIENT SOLAR

QUITA, NRCAN

VEN LOW-CARBON IES: DRAKE LANDING ND (ZOOM)

ATHIENITIS IA UNIVERSITY,

DING-GRID ON AND DYNAMIC F ELECTRICITY

AMMERBACHER (S2E,

KEY INGREDIENT IC APPROACH TO BLE COMMUNITY ONDON, ONTARIO DIES (ZOOM)

NG REMARKS

y local time (+8H CEST)

Seminar

Enjoy the seminar!

SSHRC CRSH

UNIVERSITY OF Solar Energy and Community Design Lab (SECDL)

NTNI

Department of Civil and Environmental Engineering

www.iea-shc.org

鰸

SECET

@IEASHC Y

IEA Solar Heating and Cooling Programme in (group 4230381)

SOLAR HEATING & COOLING PROGRAMME INTERNATIONAL ENERGY AGENCY

Technology Collaboration Programme by lea

LUND UNIVERSITY

Introduction to IEA SHC Task 63: Solar Neighborhood Planning

Maria Wall

The presentation first defines the concept of neighborhood and identifies the contribution of solar energy to renewable energy production, food production, and daily life. The primary purpose of the presentation is to outline the objective and scope of the IEA SHC Task 63, and to identify the four subtasks and their main objectives.

IEA SHC Task 63 Solar Neighborhood Planning

Maria Wall, Task Manager Seminar, September 23, 2022

Technology Collaboration Programme

Definition - neighborhood

A neighborhood is defined as a group of buildings, a district/precinct. It is a spatially defined specific geographic area, often including different types of buildings and functions, open space and infrastructure.

A neighborhood can be part of a larger city or a smaller village. It can be part of an urban area, a rural development or represent an isolated community.

- Connected to a district heating/cooling network or outside, giving different boundary conditions

Solar Contributions

- Passive solar energy: indoors and outdoors to reduce heating demand and improve thermal comfort and health
- Daylighting buildings and outdoor areas, to reduce electricity for lighting and improve visual comfort and health
- Local renewable energy production using Photovoltaics (electricity) and Solar Thermal Systems, to help create energy/resource self-sufficient environments and not rely on energy imports, and to create resilience to energy price fluctuations
- Local food production and use of green areas for improved air quality and reducing storm water (roofs, facades, outdoor areas)

Task 63: Solar Neighborhood Planning: 2019-2023

Objective

The main objective is to support key players to achieve solar neighborhoods that facilitate longterm solar access for energy production and for daylighting buildings and outdoor environments – resulting in sustainable and healthy environments.

Scope

The scope of the Task includes solar energy aspects related to

- 1. New neighborhood development
- 2. Existing neighborhood renovation and development

Solar energy aspects include <u>active solar systems</u> (solar thermal and photovoltaics) and <u>passive</u> strategies. Passive solar strategies include passive solar heating and cooling, daylighting, and thermal/visual comfort in indoor and outdoor environments.

The role of solar aspects related to energy, environment, economy and inhabitants' comfort and health is in focus

Subtasks and leaderships

A. Solar Planning Strategies and Concepts

Leader: Caroline Hachem-Vermette, University of Calgary, Canada

B. Economic Strategies and Stakeholder Engagement Leader: Silvia Croce & Daniele Vettorato, EURAC Research, Italy

C. Solar Planning Tools

Leader: Jouri Kanters, Lund University, Sweden & Martin Thebault, University Savoie Mont-Blanc – INES, France

D. Case Studies

Leader: Gabriele Lobaccaro & Mattia Manni,

Norwegian University of Science and Technology NTNU, Norway, jointly with all leaders

Project leader (Task Manager): Maria Wall, Lund University, Sweden

www.iea-shc.org

Participating countries

- Australia
- Canada
- China
- Denmark
- France
- Italy
- Norway
- Sweden
- Switzerland

LAR HEATING & COOLING PRO TERNATIONAL ENERGY AGEN

Thank you!

For more information, see

Task 63: Solar Neighborhood Planning (2019-2023): https://task63.iea-shc.org/ Publications: https://task63.iea-shc.org/publications \blacktriangleright Identification of existing tools and workflows for solar neighborhood planning Surface uses in solar neighborhoods

Finalized projects:

Task 51: Solar Energy in Urban Planning (2013-2018): <u>https://task51.iea-shc.org/</u>

Task 41: Solar Energy and Architecture (2009-2012): https://task41.iea-shc.org/

Maria Wall / Energy and Building Design, Lund University Funded by the Swedish Energy Agency

Solar Daylight in Urban Planning

Olaf Bruun Jørgensen

The presentation first introduces Danish Energy Managementand gives an overview of the scope fo their work. This is followed by an introduction to solar planning in urban areas, and the benefits of daylighting and solar utilization. The majority of the presentation is focused on several case studies that exemplify the use of daylighting, including Gehry City Harbour (Sonderborg), FredericiaC, New Urban Quarters (Arslev), and Carlsberg.

Olaf Bruun Jørgensen Project Manager Sustainable Building Design & Urban Development Tel.: +45 20 99 23 07, e-mail: obj@dem.dk

Solar Neighborhoods – Danish Case studies

September, 2022

Danish Management Group

DANISH MANAGEMENT

●¥円! DANISH DESIGN RESTAURANTS

Dansk Ejendoms Management En del af Danish Management Group

Danish Energy Management

- DEM Danish Energy Management A/S was founded in 1986
- ESB Esbensen Consulting Engineers A/S was founded in 1947
- DEM and ESB were merged in 2012
- DEM has approx. **70 experts**
- Headquater in Århus, Denmark

Dansk Energi Management & Esbensen

En del al Danish Management Group

Sustainability & Energy management

Sustainable building design and urban development

Client consultancy

SUSTAINABLE DEVELOPMENT G ALS

Sustainable development goals

Research & Development

Main services

- Energy supply systems ۲
- Technical installations (HVAC) ٠
- **Electrical installations** ۲
- Indoor climate
- Sustainability ۲
- Renewable energy
- Sustainable master plan design ۲
- Low/zero/plus energy buildings ٠

Dansk Energi Management & Esbensen

En del al Danish Management Group

SLOW SPEED PLANNING

REUSE

RENOVATION OF EXISTING BUILDINGS

> LOCAL FEASIBLE ENERGY SUPPLY

LOCAL FEASIBLE **HEATING & COOLING**

SHARED FACILITIES

WASTE SORTING

Key aspects for solar energy in urban areas

In urban planning projects DEM analyses and optimizes location and **geometry** of buildings through an Integrated Design Process in order to ensure good solar and daylight access for the buildings in the area. In sustainable urban planning, this is essential for outdoor areas as well as for indoor climate and local energy production, in the very beginning of the planning phase.

Our focus areas are:

- Daylight
- Utilization of solar energy
- Solar access and shading conditions in urban spaces

Daylight – What and Why?

- Most energy effective light source (reduction of energy demand)
- Maximum lighting comfort \bullet
- Almost impossible to change daylight conditions without signifant ${}^{\bullet}$ changes in the site plan

Special attention in order to ensure good daylight conditions:

- Hight of opposite building
- Street with (distance to oppposite building) \bullet
- Colour of facade (reflectance) of opposite building
- Window size, placing and type
- Space depth and room hight

Shadows and solar utilization – Why important?

Shadow analysis

Direct solar is necessary to create urban life ۲ As a minimum, one urban space with direct solar in the morning, noon and afternoon must be available

Passive Solar

Utilization of passive solar is free and reduces the energy demand \bullet

Active Solar

What is the potential for local "free" energy production?

DK examples of new urban areas

Gehry City Harbour Sonderborg

- Daylight
- Utilization of solar
- Solar access and shading in urban spaces

FredericiaC

- Daylight
- Utilization of solar
- Solar access and shading I urban spaces

Solar Neighborhoods - Danish Case Studies, September, 2022

DK examples of new urban areas

New Urban Quarters, Årslev

- Daylight \bullet
- Utilization of solar
- Wind

Carlsberg

Utilization of solar

Gehry City Harbour Sonderborg

Participants:

- Sønderborg Harbour Company
- Project Zero
- Municipality of Sonderborg
- Gehry Partners, LLP
- Juul & Frost architects
- Danish Energy Management

Area: Floor area

50.000 m² 52.400 m²

Sonderborg Harbour – Gehry proposal – Is it sustainable ?

Sonderborg Harbour - Daylight

- Daylight factor > 2 % for work places
- The higher the daylight factor, the lower the need for artificial lighting and use of electricity

Analysis is based on the Wall to Window Ratio factor. Developed as a part af business PhD by Anne Iversen

Note:

- Room dimension 12x20x4, (depth x length x hight)
- Room groundfloor
- On-sided lit room
- Windows in the entire lenght of the facade
- (Placement, from window breast and up)

Signature:

Critical facades for daylight

	DF <2% always
_	DF >2% using 75% windows
	DF >2% using 60% windows
	DF >2% with less than 60% windows

7				
71		-	_	
		7	1	

Partarea:	Sønderbor	g Havn	
Issue:			measure:
Critic	al facades		1:1000
date:			Drawing no:
16.05	.2008	T-M-0	-0-1-03

Sonderborg Harbour – Daylight - Fair

- Daylight factor > 2 % for work places
- The higher the daylight factor, the lower the need for artificial lighting and use of electricity

Analysis is based on the Wall to Window Ratio factor. Developed as a part af business PhD by Anne Iversen

- Room dimension 12x20x4, (depth x length x hight)
- Room groundfloor
- On-sided lit room
- Windows in the entire lenght of the facade
- (Placement, from window breast and up)

Signature:

Critical facades for daylight

- DF <2% always
 - DF >2% using 75% windows
- DF >2% using 60% windows
- DF >2% with less than 60% windows

Partarea:	Sønderbor	g Havn	
Issue:	al facades		measure:
date:	di lucudes		Drawing no:
16.05	2008	T-M-	0-0-1-03

Sonderborg Havn – Solar access

Signature:

Not suitable for implementing solarce more than 3 hours in the shadows

Suitable for implementing solarcells 2-3 hours in the shadows

Optimal for implementing solarcells no shadows

Sønderborg Havn

16.05.2008

measure: 1:1000 Drawing no: T-M-0-0-1-03

file placement: PLACERING/FILMANN

Sonderborg Havn – Solar access – Too little

Signature:

Not suitable for implementing solarce more than 3 hours in the shadows

Suitable for implementing solarcells 2-3 hours in the shadows

Optimal for implementing solarcells no shadows

Partarea: Sønderborg Havn

Issue: Solarcells

date: 16.05.2008 measure: 1:1000 Drawing no: T-M-0-0-1-03

file placement: PLACERENG/FILMANN

Sonderborg Havn – Solar access and shading – Equinox

- Left square No solar
- On main square Only solar in the middle of the day
- Theatre square Solar from the middle of the day

Insufficient solar and daylight conditions in first Gehry proposal

Sonderborg Harbour

- Create life/light in urban spaces
 - Ensure direct solar in different places morning, noon and afternoon
- Design for increased solar utilization
 - Solar access
 - Daylight

Design workshop with architect

Solar Neighborhoods - Danish Case Studies, September, 2022

Sonderborg Harbour

- Create life/light in urban spaces
 - Ensure direct solar in different places morning, noon and afternoon
- Design for increased solar utilization
 - Solar access
 - Daylight

Design workshop with architect

Solar Neighborhoods - Danish Case Studies, September, 2022

Sonderborg Havn – Sollar access and shading - Equinox

Sonderborg Havn – photos & visualisations

http://www.byenshavn.dk

Figure 7 - Apartment building at City Harbor Sonderborg. (Source: © www.arkark.dk)

Figure 8 - Visualisation from hotel project at City Harbor Sonderborg (Source: C Henning Larsen Architects)

Figure 9 - Office building at City Harbor Sonderborg (Source: www.google.com)

Fredericia C

Participants:

- FredericiaC P/S
- **Municipality of Fredericia**
- Realdania
- **KCAP Architects Planners**
- Vandkunsten
- Danish Energy Management

204.000 m² Area: 265.580 m² Floor area:

FredericiaC - Daylight

FredericiaC - Daylight - Final development plan

Housing

• Most housings will have very good daylight conditions. In critical areas apartments could be in 2 storeys

Offices

• Good daylight conditions everywhere

Hotels, retail and culture

• Good daylight conditions everywhere

Analyses made for ground floor

FredericiaC – Solar access

Available roof area for PV

In final masterplan 95 % of roof surface may be used for PV

I.e. 65.000 m² PV corresponding to an annual production of electricity of 8.750
MWh ≈ the electricity demand in 2.000 homes

FredericiaC - Solar access and shading – Final masterplan

Shading analyses at equinox (22/3, 22/9), kl. 9.00, 12.00 og 15.00

Most urban spaces have good direct solar access

FredericiaC – Visualization of part of FredericiaC

http://www.fredericiac.dk/

New Urban Quarters, Årslev

Participants:

- Municipality of Midtfyn
- Vandkunsten
- Danish Energy Management
- Raw Mobility
- Bactocon

 Area:
 ca. 200.000 m²

 Floor area:
 up to 60.000 m²

Time schedule: 2018 - 2050

New Urban Quarters, Årslev - Solar

Wh/m²

70 % of roof surfaces are suitable
≈ 21.000 m² PV panels
≈ 2.900 MWh/year

≈ 560 low energy homes – heat pumps (PV)Total energy demand_{build} = 2.600 MWh/year

Energy surplus of 300 MWh/year ≈ 65 homes

New Urban Quarters, Årslev - Daylight

1-1

WWR [%]

0.90<

0.80

0.70

0.60

0.50

0.40

< 0.30

Attractive daylight conditions in ≈ ca. 76 % of facades (yellow, orange and røde)

Remaining rooms get daylight from 2 facades

Thus, attractive daylight acces everywhere

New Urban Quarters, Årslev - Wind

Attractive outdoor conditions (wind velocities < 5 m/s in + 70 % of the built area

12 10 8 6 2 - 0.0e+0

Carlsberg - A new urban area in central Copenhagen

Participants:

- Carlsberg
- **Entasis architects**
- Danish Energy Management

Area:	300.000 m ²
Floor area	600.000 m ²

Time schedule:

2007 - 2027

Carlsberg - Solar

T	1.4	0.0	1.1	01
	101-	U-	J- I	-01

Rammelokalplan carlsberg - vores by - vores rum

Note

Skygger sommer 21.juni En tårnskygge To tärnskygger

21'st of June

delområde: Område 1

^{emne:} Tårnskygger sommer (21 juni) dato: 28.02.2008 T-M-0-0-1-01

filplacering:

Carlsberg group Ny carlsberg vej 100, 1760 København V Esbensen Rådg. Ing. A/S Carl Jacobsens Vej 25D, 2500 Valby

mál: 1:3000

tegnings nr:

Carlsberg - Solar

T-M-0-0-1-02

carlsberg - vores by - vores rum

21'st of Sep/Mar

màl: 1:3000 tegnings nr: T-M-0-0-1-02

Solar Digitization Techniques to Enhance Optimal Exploitation of Solar Energy in the Nordics

Gabriele Lobaccaro and Mattia Manni

The presentation begins with an introduction to solar energy potential and the photovoltaic landscape in Nordic climates. It also explores opportunities for solar energy potential in different latitudes. This is followed by a presentation of the HELIOS Project, firstly by introducing a brief on HELIOS and the HELIOS NTNU Team, then by discussing Green 2050. The presentation concludes with a discussion on solar digitization techniques to enhance optimal exploitation of solar energy in the Nordics. The objective of this research was to develop and validate a solar irrandiance model chain that could be used in the Nordics.

Helics - NFR FRIPRO FRINATEK Solar digitalization techniques to enhance optimal exploitation of solar energy in the Nordics

Gabriele Lobaccaro

Associate Professor E-mail: gabriele.lobaccaro@ntnu.no

Seminar ON SOLAR NEIGHBORHOODS

Calgary (Canada) Friday 23.09.2022

The Research Council of Norway

SOLAR ENERGY POTENTIAL

The solar energy potential

- Solar energy potential
- Opportunities for the solar energy potential in different latitudes

Kunnskap for en bedre verden

 \bigcirc NTNU

INTIMI Kunnskap for en bedre verden

CHALLENGE SOLAR In the Nordic climate!

Kunnskap for en bedre verden

Solar radiation on a horizontal surface (kWh/m²år)

rdic Energy Research	Sustainable Energy Systems 2050 NORDIC ENERGY RESEARCH PROGRAMME
	Annual Sun Hours
)	1500
g	1700
	2000

Solar radiation on a 2-axis solar tracking surface (kWh/m²år)

Solar cells in the Nordic climates

Solar installation in Norway

Cumulative installed power in Norway

- Installed capacity for solar power in Norway has increased tenfold during the last five years
- Misconception that the level of irradiation in the Nordics is much lower than in the Continental Europe
- New opportunities for solar energy (i.e., building-integrated photovoltaic, agri-photovoltaic, floating solar systems)
- Needs for tools and platforms such as the Solar Cadastre to support designers and urban planner

Objective Development and validation of solar irradiance model chain to be used in the Nordics

Referanse: <u>solenergiklyngen.no</u> / <u>multiconsult.no</u> / <u>tu.no</u> / fmezen.no

180 160

140 120

 $\underbrace{\overset{100}{\overset{100}{\overset{80}{{{{{{{{{$

60

40 20

82

Development in installed capacity for solar power in Norway

Case study of solar energy potential in Norway

Norge

SOLAR POTENTIAL OPTIMIZATION IN URBAN PLANNING IN EXTREME COLD CLIMATE CONDITIONS

Design guidelines for solar accessibility and solar design for developing the masterplan of Øvre Rotvoll neighbourhood in Trondheim (Norway)

Reference: Lobaccaro G., Carlucci S., Croce S., Paparella R., Finocchiaro L., Boosting solar accessibility and potential of urban districts in the Nordic climate: A case study in Trondheim, Solar Energy Vol. 149, (2017), pp. 347-369.

Case study of solar energy potential

Kunnskap for en bedre verden

 \bigcirc NTNU

85

Øvre Rotvoll

Trondheim

Case study of solar energy potential in Norway

Norge

Masterplan of Øvre Rotvoll

Reference: Lobaccaro G., Carlucci S., Croce S., Paparella R., Finocchiaro L., Boosting solar accessibility and potential of urban districts in the Nordic climate: A case study in Trondheim, Solar Energy Vol. 149, (2017), pp. 347-369.

Solar systems in the Lerkendal district

Data of photovoltaic facade:

- 200 m2 South and West facades; •
- 27.2 kWp, 9 strings; •
- Annual production: 18 000 kWh; •
- Actual production (2013): 15 000 kWh (+15%simulated)

Data of the building:

- Building area: 11 000 m2; •
- Annual consumption 84 kWh/m2 -• Energy class A.
- Connected to district heating and power grids.

Destination of the district and functions:

- Sports facilities,
- **Commercial buildings**
- Service warehouse

Solar systems in the Lerkendal district

View from the top of Lerkendal Studentby - Reference: http://www.adressa.no/

Analysis using dynamic simulations

3: Energy production

🖸 NTN

PVsyst PV simulation

Polysun

Referance: Good C.S., Lobaccaro G., Hårklau S., Optimization of solar energy potential for buildings in urban areas - a Norwegian case study, Energy Procedia, Volume 58 (2014) pp 166-171

Kunnskap for en bedre verden

DIVA FOR RHINO

DiVA for Rhino **Based on Radiance** ray-tracing method

DAYSIM

ADVANCED DAYLIGHT SIMULATION SOFTWARE

Solar thermal

Kunnskap for en bedre verden

Approach to Assess Solar Energy Potential at the Neighborhood Scale. Energies 2019, 12, 3554

Reduction factors

Reference: Lobaccaro, G.; Lisowska, M.M.; Saretta, E.; Bonomo, P.; Frontini, F. A Methodological Analysis Approach to Assess Solar Energy Potential at the Neighborhood Scale. Energies 2019, 12, 3554

Recommendations on solar technology

Recommendations on solar technology for the critical area for the feasibility study II

Kunnskap for en bedre verden

HELIOS – Project presentation

HELIOS is presenting

- Brief on HELIOS
- HELIOS NTNU Team
- **Green** 2050

Kunnskap for en bedre verden

INTNU

HELIOS – NFR Fripro FRINATEK

enHancing optimal ExpLoitatIOn of Solar energy in Nordic cities througn aigitalization of built environment / vec. 2021 - Apr.2025

Project owner: *NTNU / IV / IBM* Project manager: *Ass. Prof. Gabriele Lobaccaro* NTNU Partners: *IDI, IndEcol, MTP, IMA* National partners: *SINTEF Community, Trondheim Kommune*

Kunnskap for en bedre verden

International partners:

HEPIA - Geneva School of Eng., Arch. and Landscape – Univ. of Applied Sciences and Arts Western Switzerland; USMB/INES - University Savoie Mont Blanc / National Institute of Solar Energy (France); UCB Lyon 1/CETHIL - Claude Bernard University / Centre d'énergétique et de thermique de Lyon (France).

HELIOS - enHancing optimal ExpLoItatIOn of Solar energy in Nordic cities through digitalization of built environment

WP 6 - Stakeholders involvement and Citizens' participation

Image: Comparison of the state of th

Deep learning-based approach for automated reconstruction of 3D building models with semantic information

1 - Building dataset for deep-learning based façade parsing

to achieve façade parsing in street-level images with complex scenes ----(multi view, multi-illumination, distortion, foreground occlusion, background interference)

2 - Deep learning based complex-scene façade parsing

Using object detection CNN to extract window/door/balcony and roof/shop, respectively

(a) Mapillary Street-View Images

(b) Segmentation Datasets

G., & Fan, H. (2020) Facade Parsing for Street-Level Images Using Convolutional Neural Networks. IEEE Transactions on Geoscience and Remote Sensing

Kunnskap for en bedre verden

(c) Object Detection Datasets

Deep learning-based approach for automated reconstruction of 3D building models with semantic information

Kunnskap for en bedre verden

Fan, H., Kong, G., & Zhang, C. (2021). In Interactive platform for low-cost 3D building modeling from VGI data using convolutional neural network. Big Earth Data, 5(1), 49-65.

Semi-automatic **3D building reconstruction**

Kunnskap for en bedre verden

. Ledoux. H., & Stoter, J. (2016). oved LOD specification for 3D building models. Computers, Environment and Urban Systems, 59, 25-37

Kunnskap for en bedre verden

 \bigcirc NTNU

https://www.ntnu.edu/green2050

Synergies NTNU projects & User Interface in Digital Twin

2021

Kunnskap for en bedre verden

Digital control

101

AUGMENTCITY

Human interaction

Helics - NFR FRIPRO FRINATEK Solar digitalization techniques to enhance optimal exploitation of solar energy in the Nordics

Mattia Manni

PostDoc Fellow E-mail: mattia.manni@ntnu.no

The Research Council of Norway Seminar ON SOLAR NEIGHBORHOODS

Calgary (Canada) Friday 23.09.2022

Problem statement and research objective

Objective Development and validation of solar irradiance model chain to be used in the Nordics

¹ Formolli, M., Lobaccaro, G., Kanters, J., 2021. Solar Energy in the Nordic Built Environment: Challenges, Opportunities and Barriers. Energies 14

Kunnskap for en bedre verden

 \Box NTNU

Solar irradiance model chain

- The solar irradiance model chain (SIMC) permits to estimate the **global tilted irradiance** (GTI) from the global horizontal irradiance (GHI) or from both diffuse horizontal irradiance (DHI) and direct normal irradiance (DNI)
- The SIMC is **flexible** (i.e., can include indifferently a combination of decomposition and transposition models or only transposition models) and **bidirectional** (i.e., from GTI to GHI)
- The SIMC's flexibility represents a solution to data unavailability (i.e., too many and/or too expensive sensors)

Solar irradiance model chain Model chain **DECOMPOSITION** TRANSPOSITION DN Calcuated GHI **DHI/DNI** R²: 0.81 nMBD: -6.1 nRMSD: 59.7 **CECMWF** CSA MELLIUM RANGE WEATHER FOR CASTS OCCUPIED ON CONCUMPTION OF CONCUMPTION OF CASTS OCCUPIED ON CONCUMPTION OF CONCUMPTION OF CASTS OCCUPIED ON CONCUMPTION OF CONCUMPTICON OF CONCUMPTION OF CONCUMPTION OF CONCUMPTICA OF CONCUMPTION Measured GHI **DHI/DNI** Ser stilling of the Calibration day Node in The Setseting

Solar irradiance model chain Model chain **DECOMPOSITION** TRANSPOSITION DN Calcuated GHI **DHI/DNI** R²: 0.81 nMBD: -6.1 nRMSD: 59.7 **CECMWF** CSA MELLIUM RANGE WEATHER FOR CASTS OCCUPIED ON CONCUMPTION OF CONCUMPTION OF CASTS OCCUPIED ON CONCUMPTION OF CONCUMPTION OF CASTS OCCUPIED ON CONCUMPTION OF CONCUMPTICON OF CONCUMPTION OF CONCUMPTION OF CONCUMPTICA OF CONCUMPTION Measured GHI **DHI/DNI**

Solar iradiance model chain Model chain DECOMPOSITION TRANSPOSITION Image: Colspan="3">Image: Colspan="3">Image: Colspan="3" Image: Colspan="3" Image: Colspan="3" Image: Colspan="3" Image: Colspan="3" Image: Colspan="3">Image: Colspan="3" Image: Colspan="3">Image: Colspan="3" Image: Colspan="3" Image: Colspan="3" Image: Colspan="3" Image: Colspan="3" Image: Colspan="3" Image: Colspa="3" Image: Colspan="

GHI

Solar irradiance model chain Model chain **DECOMPOSITION** TRANSPOSITION DN Calcuated GHI **DHI/DNI** pvlib Pere: R²: 0.81 nMBD: -6.1 nRMSD: 59.7 **CECMWF** CSA Europe's eyes on Earth Measured GHI **DHI/DNI**

Solar irradiance model chain

Kunnskap for en bedre verden

- Datasets from various sources and different time resolutions are considered to predict photovoltaic energy generation.
- Photovoltaic energy output is monitored with a one-hour timestep in the Test Cell Lab, Trondheim (Norway).
- Model chain length changes accordingly to the input parameters.
- Numerical results are validated against experimental data considering the MBE and RMSE indicators.
- The **most adequate dataset** to predict photovoltaic energy production at high latitudes is determined.

Kunnskap for en bedre verden

SOLAR RADIATION DATASETS

- From the ERA5-Land:
- One-hour GHI
- From CAMS:
- One-minute DHI/DNI
- In the Test Cell Lab:
 - Five-minute GHI
 - **One-hour GTI**
 - One-hour PV power output
- In Gløshaugen Sentralbygg:One-minute DHI/DNI

Kunnskap for en bedre verden

INTNU

112

Kunnskap for en bedre verden

NTNU

Kunnskap for en bedre verden

114

CONCLUSIONS

Measured solar radiation should be despite their time

Measured DHI and DNI or satellite imaging methods should be used instead of GHI datasets.

Measuring GTI is also a valid option.

Thank you!

Gabriele Lobaccaro

Associate Professor E-mail: gabriele.lobaccaro@ntnu.no

Mattia Manni

Post Doctoral Research Fellow E-mail: mattia.manni@ntnu.no

Australian Insights and Case Study Examples for Solar Neighborhood Planning Mark Snow

This presentation investigates several architectural case studies that have incorporated solar energy into the building's design, including 550-558 Spencer Street (Melbourne), 435 Bourke Street (Melbourne), One Central Park (Sydney), and White Gum Valley (Perth).

Australian case study contributions to SubTask D

Dr Mark Snow

Task Manager: Maria Wall, Lund University, Sweden Task Duration: 1 September 2019 – 31 October 2023

Technology Collaboration Programme by lea

21 SEPTEMBER, 2022 TASK 63 CALGARY MEETING

550-558 Spencer Street Melbourne

8 storey tower 1,180 solar CIGS panels 11-13% efficiency @120W/m² Completion – 2024 **Kennon Architects**

50 times more electricity than a standard rooftop solar panel system used in residential projects.

Special fire safety testing undertaken to meet national building codes

Source: Pete Kennon Architect https://www.kennon.com.au

An artist's rendering of the Spencer Street building. Image: Neoscape (https://www.neoscape.com.au/)

2

www.iea-shc.org

Visualisation: https://www.cuubstudio.com

SOLAR HEATING & COOLING PROGRAMME INTERNATIONAL ENERGY AGENCY

435 Bourke Street Melbourne

Before and after designs. Reduced from 250 to 180m Source: Bates Smart

Cbus Property's \$1 billion tower Designed by Bates Smart 48-level tower in the Melbourne CBD

PV glass façade system AVANCIS Skala panels Generate 20% of the building's base power Completion – 2026 Link to initial planning development application

TERNATIONAL ENERGY AGENC

www.iea-shc.org

SUNDRIVE www.sundrivesolar.com

Vince Allen and David Hu (UNSW students) established SunDrive in 2015

26.07% efficiency record for heterojunction PV cell in mass production using Copper instead of Silver – March 2022

Increased to 26.41% – *September 2022*

Pilot production line planned for mid 2023

Copper is around 100 times cheaper per kilogram and around 1,000 times more abundant than silver.

Billbergia Group - Heliostat construction video HeliostatSA, SJB Architecture, Inhabit Technical Design and Samaras Engineering

Plastic sheeting covers the reflective surface and filters out UV light in order to ensure harmful UV rays are not directed towards the plaza.

www.iea-shc.org

Billbergia's 39-storey tower at Rhodes Central Inner West Sydney

One Central Park - Sydney

Source: PTW Architects

Site area: 255,500 m² Gross building area (GBA): 67,626 m² Floor to Space Ratio (FSR): 11:1

Trigen thermal system for power, heating and cooling integrated with rainwater collection and sewerage recycling that provides 1 megalitre of water per day and

Also, 93% of demolition material was recycled from the

Architects/designers - PTW Architects/Ateliers Jean Nouvel (AJN) Green Wall Design – Patrick Blanc Heliostat lighting – Yann Kersalé Owners/developers – Frasers Property and Sekisui House Australia Main Contractor – Watpac Construction Structural Engineers - Robert Bird Group

Source: PTW Architects

Groundbreaking green façade and a 120 tonne cantilevered heliostat to direct natural sunlight to parts of the development that would typically be in shade due to the density of the urban environment.

One Central Park - Sydney

Figure 1 – Heliostat and Cantilever Reflector structure. (Photo/source: PTW Architects)

Figure 2 - Dual axis tracking Heliostats. (Photo/source: Mark Snow)

Figure 3 - Cantilever mirrors and Heliostats viewed by Task 51 experts on a site visit in 2017. (Photo/source: Mark Snow)

KEY HELIOSTAT FACTS

- 40 dual-axis tracking Heliostats (each 6.5m²) on East Tower
- Redirects sunlight to the underside of a cantilevered reflector frame of 320 (1.25m²) fixed mirrors on the West Tower.
- The heliostats are made of a plastic core and hail proof aluminium skin to provide a flat and rigid surface.
- 75-80% of normal redirected sunlight acting as a canopy with around 800 watts/m² delivered under clear sky conditions.

Green Façade details

- Covers 50% of the total façade
- Building heat load reduced by 15-20%
- 5km light weight linear planter boxes
- 85,000 plants and 250 different species
- 15km irrigation system

One Central Park - Sydney

Yellow Halo kinetic sculpture by Jennifer Turpin and Michaelie Crawford

Heliostat night time lighting by Yann Kersalé

White Gum Valley Perth

Project: WGV

Location: White Gum Valley, WA Scale: 2.2 ha mixed typology residential precinct (approx. 100 dwellings) **Lead:** DevelopmentWA Status: Commenced 2013

Source: DevelopmentWA

White Gum Valley Perth

Source: DevelopmentWA

Refer to: Low Carbon CRC references from Prof. Peter Newman and Dr Josh Byrne Josh Byrne and Associates project details

Source: Tanya Babaeff (2017)

White Gum Valley Perth

One Planet Living (OPL) – Australia's first master planned One Planet Community.

Co-operative social housing – affordable housing + artists' studio for SHAC (Sustainable Housing for Artists and Creatives).

Gen Y demonstration house – a design competition for sustainable, flexible, affordable housing for Gen Y home buyers.

Revitalisation of old drainage sump into community bore – nature play public space and alternative water source.

Significantly lower energy required to source water (normally desalination water plants)

Baugruppen demonstration project – individuals as co-operative developers.

Research connections – Co-operative Research Centre CRC living lab;

Innovation for sustainability @ WGV

White Gum Valley Perth

Source: Josh Byrne and Associates

Power Ledger – shared solar power and battery stoarge on strata-titled development

Solar Energy and Daylighting in Swedish Case Studies

Alejandro Pacheco Diéguez

The presentation introduces first White Arkitekter and discusses the scope and goals of the firm. The two case studies, Stadsljus (Stockholm) and Uppsala Business Park (Uppsala), investigate the integration of environmental design methodologies in the building design and urban planning processes at the block scale and district scale, respectively.

Integration of environmental design methodologies in the building design and urban planning processes

Alejandro Pacheco Diéguez, architect and environmental design specialist Task 63 meeting, Calgary, September 23rd 2022

Technology Collaboration Programme by lea

Integration of environmental design methodologies in the building design and urban planning processes

STADSLJUS: residential high-rise building (block scale) UPPSALA BUSINESS PARK: Positive energy dis (district scale)

mhite,

About WHITE

"Enable sustainable life through the art of architecture"

- LEADING ARCHITECTURE FIRM
- EMPLOYEE-OWNED
- ALL PROJECTS CLIMATE NEUTRAL (2030)

- CROSS-DISCIPLINARITY

DIGITALISATION EXPLORATIVE CULTURE

@whitearkitekter whitearkitekter.com

STADSLJUS

Unique high-rise residential building Architectural competition Clients: OBOS Nya Hem and Stockholms Stad

• Royal Seaport (Stockholm)

3777723

Enhanced workflow

High requirements

Health and well-being
Environmental impact
Climate change adaptation
Social sustainability

Design methodology

Iterative
Interdisciplinar
Integrated
Qualitative and quantitative sustainability analysis
From early stages (indicators and rough analysis)
Detailed analysis when needed
Proof of compliance (final analysis)

white,

ហៅវិន

139

EARLY STAGE MULTI-OBJECTIVE OPTIMIZATION: ENERGY VS. DAYLIGHT

140

STADSLJUS

いわえる

SOCIAL SUSTAINABILITY

- Affordability (cost-efficiency) -
- **Design rationalization (modularity)**

white

143

WHITE ARKITEKTER

ENERGY EFFICIENCY IN DETAILS

FASADUTSNITT SKALA 1:20 (A1) / 1:40 (A3)

PARALLELLT UPPDRAG STADSLIUS

ENERGY EFFICIENCY IN DETAILS

WHITE ARKITEKTER

Beräknat värmeflöde genom bjälklagskant: 0,129 W/mK

Beräknat värmeflöde genom referensfall yttervägg: 0,081 W/mK

PARALLELLT UPPDRAG STADSLIUS

ENVIRONMENTAL IMPACT

- Low-embodied carbon: material choice

white,

ESTIMATION OF CONSTRUCTION MATERIALS EMBODIED CARBON DURING EARLY DESIGN STAGES

WHEAT: CO2 V1.43 MODEL SETTINGS LAUNG Define the use of the floor volum **Check model** Attribute 0 MATERIAL LIST 3-glas fönster, trä 3-glas fönster, trä+aluminium

Refresh

Create test model

いわれる

				-	×
CH			HELP		
es:					
Select					
		[preview		
		55. FÖNSTER,	Dörrar, 🔻		
		195 kgC	O2/m2		
EMI	SEC	1	DESCRIPTIO	N	
0.2	0	kgCO2/m2	0		
77.3	0	kgCO2/m2	0		
102.2	0	kgCO2/m2	0		
194.9	0	kgCO2/m2	0		

147

CLIMATE CHANGE ADAPTATION

- Wind comfort
- Wind risk
- Heat wave mitigation
- Biodiversity

LESSONS LEARNED

In projects with high environmental targets:

Start early
Work iteratively
High requirements (good driver)
Integrate within the workflow of architects

UPPSALA BUSINESS PARK

Positive Energy District (PED) Existing biomedical factories New buildings (300 000 sqm): labs, offices, hotels and schools.

With: Corem, Thermo Fisher, J&J, Vattenfall, Mandaworks

Industrial area in Uppsala (Sweden)

5 phases (finished in 2037)

white

POSITIVE ENERGY PLANNING PROCESS

PEPP

POSITIVE ENERGY PLANNING PROCESS

"Leading the development towards Energy-positive and climate neutral places where people, enterprises and nature can flourish"

ERBJUDANDE

POSITIVE ENERGY PLANNING PR

Positive Energy Planning Process [PEPP]

Positive Energy Districts [PEDs]

The implementation of *Positive Energy Districts*, where actions are taken at neighbourhood scale, and not only on individual buildings, is a cornerstone for achieving climate goals.

THE OPPORTUNITY / SOLUTION

Why PEDs ?

Energy

Business-As-Usual approach increases energy consumption and Co2

The PED approach can result in a net surplus of energy and other energy services

Towards "Positive-energy" Communities engaged with new energy solutions.

"Prosumer"

Positive Energy Planning Process for Positive Energy Districts (PED)

Create a common vision

Energy mapping (current situation)

Energy and climate roadmap

Implementation and operational phase

Follow-up and continuous improvement

Diffusion and scaling up

いわれる

UPPSALA BUSINESS PARK - POSITIVE ENERGY DISTRICT

PHASES

2031, kWh/year

2037, kWh/year

いわだい

EXISTING BUILDINGS - SOLAR PANELS

Buildings with heritage value (not suitable for PVs)

Areas where it is **technically easy** to place PVs

Areas with a good solar irradiance

159

Areas suitable for solar panels

DETAILED SOLAR PANEL DESIGN

Buildings 1 and 16

white,

Climate

So Climate

Bio-(Multipar

Green roof

(Climate change adaptation)

=

Solar panels

(Climate change mitigation)

Bio-solar roofs

(Multiparameter optimization)

white

NEXT STEP: LOAD MATCHING

ENERGY USE Energy use by building (hourly simulation)

ENERGY PRODUCTION Identification of areas suitable for PVs Energy production by building (hourly simulation

LOAD MATCHING Load matching (separate PV systems by building or common system)

Electricity directly used from the PVs, kWh/m2

Electricity imported from the grid, kWh/m2

white

LESSONS LEARNED

Time well invested (saves time later on)
 Important to align around the vision early on
 Understand motivations and use the right arguments

ARCHITECTURE FOR A SUSTAINABLE LIFE

Thank you!

Integration of environmental design methodologies in the building design and urban planning processes

Alejandro Pacheco Diéguez, architect and environmental design specialist Task 63, Calgary, September 23rd 2022

TRUE BLUE IN BERGEN, NORWAY

Integration of environmental design methodologies in the building design and urban planning processes

Alejandro Pacheco Diéguez, architect and environmental design specialist Task 63 meeting, Calgary, September 23rd 2022

www.iea-shc.org

🥑 @IEASHC

IEA Solar Heating (group 4230381)

Technology Collaboration Programme

165

IEA Solar Heating and Cooling Programme

How to Boost Major Solar Projects in Building Environment: The Example of a Village in Geneva, Switzerland Gilles Desthieux

The presentation discusses Switzerland's climate and energy policies and provides some background on the G2 Solar project in Greater Geneva. This is followed by a discussion of solar planning in Switzerland at the municipal level, and how it has been applied to the village of Aigues Vertes. The presentation concludes with a discussion about how solar planning can be applied to the building level.

How to boost major solar projects in building environment: the example of a village in Geneva, Switzerland

Gilles Desthieux, Professor (HES-GE/HEPIA) IEA SHC Task 63 Seminar, Calgary, 23 September 2022

Technology Collaboration Programme

hepia

Haute école du paysage, d'ingénierie et d'architecture de Genève

Content

- Swiss climate and energy policy
- Background: solar cadaster in the Greater Geneva (G2 Solar project)
- Solar planning at municipal level
- Application to the Aigues Vertes village
- Application to building level

www.iea-shc.org

Swiss federal climate and energy policy

Objectives for a climate-neutral Switzerland by 2050

Graphics: Dina Tschumi: Prognos AG

©OFEN, Perspectives énergétiques 2050+

Cement and chemical plants with CCS (2.9 Mt CO2 pa)

169

www.iea-shc.org

Solar cadaster in the Greater Geneva

Platform for boosting solar market in the Greater Geneva

2019 - 2022

Greater Geneva: 2 countries, 3 regions total area: 2000 km2

Yearly radiation output

Leaders: Partners: arx iT

HEPIA (Switzerland) University of Savoie Mont-Blanc - USMB (France)

Switzerland: State of Geneva (OCEN, SITG, Grand Genève), State of Vaud (DIREN), SIG, Region of Nyon,

France: INES, University of Lyon (CETHIL), Genevois Français, Innovales, Enedis, Caue-74, Terrinov

Selfconsumpion of solar PV: workflow

Simulation selfconsumption of each building of the Greater Geneva (265'000 buildings)

www.iea-shc.org

Web interface of the solar cadaster

Supports owners in the solar energy balance of their building <u>https://apps.sitg-lab.ch/solaire/</u>

Key performance indicator

Building and roof geometry data

www.iea-shc.org

Web interface of the solar cadaster

Technical and financial estimation

Principle:

- Pre-calculated input data
- Online update by changing the cursor position
- And/or by providing information and data through the form

Online form to fill consumption data and refine simulation

scharger l'estimation	G2Solaires	-Suisse
nte totale 🕢	Autoconsommation	0
Estimations énergétiqu	ues et économiques	
Données énergétiques		
issance 🕖	Production 0	Émissions CO ₂
7,28	26 944	5 928 économisées (koCO ₂ / an)
		(1202) 111
rt de consommation propre		
5,79%		
0,		
Données économiques		
vestissement 🕑		Frais de maintenance U
: 1/0	CHF/an	CHF/an
nuités 🕖	Temps de retour / investissement	Gains annuels 🕖
361	0 9 ans	5084
/an		CHF / an
Autres Usages de l'é	électricité haleur	
Je connais sa consomm	nation annuelle spécifique 🕚	
oui 12000	1.5	O nor
🔲 J'ai un chauffage él	lectrique direct	
Je connais sa consomm	nation annuelle spécifique 🕡	
O oui Saisir : conso I	kWh∫an	• nor
J'ai un chauffe-eau	électrique	
Je connais sa consomm	nation annuelle spécifique 🕖	
O oui Saisir . conso l	kWh/an c	• nor
J'ai une voiture éler	ctrique	
	ation annualle ande form	
Je comais sa consomm	radon annuelle specifique 🔍	~
oui 15000		O nor
Autoconsommation	sur les communs ou les n	nénages 🕐
Je souhaite calculer l'au	toconsommation sur	
O L'immeuble entier	0	
	liamant	
 Les menages uniqui 		

173

Solar planning at municipal level: Bernex (Geneva). Application to the village of Aigues Vertes.

Bernex: 10'300 inhabitants intense urbanization process in progress

Study funded by:

Conducted by:

8

Peripheral commune of Geneva, mainly rural,

Schweizerische Eidgenössenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Federal Office of Energy

Background: Energy master plan of Bernex (2020)

(CO₂, supply, efficiency)

Selection of best buildings for feasibility study

	EGID -	SUMEE_MOT	Epoqu_Lot *	CO2_evice *	Sun_roit *	CL3I *	CONSELKM	D_LICOPV_ *	D_LICOPV_ *	D_CONSPT *	D_Mutosul *	D_11 *	ADRESSE	* / * 30
	1001941	363	1981-1985	155'484	3'407	4	433'666	198'558	164'721	55%	46%	6	Chemin de Saule 120	11%
	295071893	290	1971-1980	124'099	2'290	10	233'428	101616	188'336	35%	44%	6	(Châtillon)	1.9%
1	295040313	273	2001-2005	116'767	2'090	2	60'515	22'050	250'769	8%	36%	9	(Aigues Vertes)	2.7%
	295094723	208	non connu	89'130	1159	2	120'785	40'736	167'511	20%	34%	8	(Chemin des Rouettes 30)	3.3%
	295097096	193	1981-1985	82'655	2'070	2	241'472	70150	122'970	36%	23%	8	(Chemin des Blanchards 41)	3.9%
	1001751	146	1961-1970	62'514	T266	8	255'664	102'944	43'116	70%	40%	6	(Hôpital de Loëx)	4.3%
	1001749	142	Avant 1919	60'743	1253	8	255'664	101'911	40'012	72%	40%	6	(Hôpital de Loëx)	4.8%
	1001744	142	1961-1970	60'570	1297	8	255'200	101'688	39831	72%	40%	6	(Hôpital de Loëx)	5.2%
	2034500	130	1971-1980	55'432	1075	9	28'883	13'904	115'609	11%	48%	10	Chemin des Suzettes 77	5.6%
	295095262	124	000.00000	52'957	1'188	4	70'448	37'949	85'782	31%	54%	8	(Boute de Chance)	5.5%
÷	295078241	122	1961-1970	52'391	1078	4	131716	621028	60:380	51%	47%	8	(Ecole de Lullu)	5.9%
	1001747	121	1919-1945	51945	1681	8	846'916	121/367	-	100%	14 %	ē.	(Hôpital de Loëv)	6.3%
	295101734	120	000.00000	51'378	1060	10	70'350	31803	88'240	26*/	45.	, a	Poute de l'Aire 111	6.6%
-	295094961	108	1946-1960	46'421	1141	ĩ	364'346	101010	7'452	93%	287	ă	(Hôngal da Loặy)	6.9%
-	1001732	102	1996-1990	44160	1102	, i	57724	191569	93,606	19*/	24%	ĕ	(Alexand Vertex)	7.2%
-	2951114.21	105	2006-2010	49'299	969	4	45196	25'049	76'115	25.4	EE./		Chamin du Signal 19	75/
1	2004600	100	1971 1990	40'075	1000		1021205	23 040	27/002	20/	40%		Deute d'Alte la Ville 22	7.00
1	2034300	100	1921 1970	42 313	020	4	03233	222904	21002	221	40%		Four data data de la dela	0.11/
2	233102000	100	1301-1310	42 002	333	- 4	74/770	32 304	07241	337.	337.		(Ecole de Luiy)	0.1/.
	235034353	33	non connu	42 244	034	10	14 112	32 043	00,000	33%	44%	÷	(Unemin Lagnon)	0.4%
2	235033015	35	1301-1370	33 10 1	055	10	13 3 14	3001	03 030	10%	40%		Houte de Chancy 330	0.1%
2	235033016	55	1361-1370	33712	052	10	00 500	27056	05 00 /	23%	45%		(Chemin de Chante-Merie)	5.0%
	235072331	00	1336-2000	36 345	600	10	11422	30 005	54 0 55	30%	43%	10	(Unatilion)	3.2/.
2	295100898	84	1971-1980	36 142	583	10	16/214	/85/	76 588	9%	48%	11	Chemin du Llos 15	9.5%
3	2034448	81	1961-1970	34 852	829	1	73749	23 152	58277	28%	312	9	Rue de Bernex 390	9.7%
5	295009969	80	Avant 1919	34/415	605	10	174'616	59'072	21337	73%	34%	8	Chemin des Cornaches 1	9.9%
3	1002521	79	1971-1980	33'922	1022	11	133'394	39'427	39/831	50%	30%	9	Route de Soral 152	10.2%
7	295070695	77	non connu	33'088	814	10	81'874	33791	43'518	44%	41/	8	(Chemin des Abarois 8)	10.4%
3	1001742	77	1981-1985	32'751	582	1	72'576	22'547	53'973	29%	31%	10	(Aigues Vertes)	10.6%
э	2034503	76	1986-1990	32'632	896	5	112/514	43'787	32'455	57%	39%	8	Route de Pré-Marais 26	10.9%
)	1001734	76	Avant 1919	32'349	568	1	45'084	15148	60'433	20%	34%	10	(Algues Vertes)	11.1%
	1001738	70	1961-1970	30'074	569	1	34'240	11'783	58'485	17%	34%	12	(Algues Vertes)	11.3%
2	2034446	70	1971-1980	30'041	568	9	170'806	55'427	14'763	79%	32%	7	Route du Merley 1	11.5%
3	295103984	70	1986-1990	29'752	670	10	104'300	39'309	30'204	57%	38%	9	(Aigues Vertes)	11.7%
4	295071750	68	1946-1960	29'228	521	10	11'398	5'555	62'735	8%	49%	12	Chemin de la Tuilière-Foëx 1	11.9%
5	1001775	66	1961-1970	28'201	656	8	624'660	65'889	-	100%	11%	7	Chemin du Stand 2	12.1%
\$	295102683	63	non connu	27'123	459	10	3,830	1'924	61'449	3%	50%	12	Chemin de Sur-Beauvent 70	12.3%
7	295071665	62	1971-1980	26'471	597	8	216'379	60'744	1105	98%	28%	8	(Rue de Bernex 340)	12.5%
3	1001733	58	1971-1980	25'022	545	1	41210	13'542	44'920	23%	33%	11	(Aigues Vertes)	12.6%
3	295073641	58	1946-1960	24'698	737	9	42'098	18'586	39'119	32%	44%	11	(Route de Loëx)	12.8%
5	295009919	57	1946-1960	24'517	423	10	11313	5'476	51807	10%	48%	12	Route du Merley 46	13.0%
1	1002593	57	Avant 1919	24'514	780	2	13'003	4'732	52'544	8%	36%	11	Chemin des Curiades 4	13.1%
2	2034497	57	1986-1990	24'375	534	9	61'290	25'197	31754	44%	41/	10	Route de Pré-Marais 58	13.3%
3	295071357	56	1961-1970	24'047	560	11	22'890	8'733	47'451	16%	38%	11	(Route dIAire-Ia-Ville 22)	13.5%
7	1001789	47	1961-1970	20'075	607	1	29126	9'734	37'171	21%	33%	13	Chemin des Rouettes 27	13.6%
3	1002175	45	1971-1980	19159	411	1	31748	10'423	34'340	23%	33%	12	Bernex-en-Combes 12	13.8%
3	1001746	45	1961-1970	19105	517	8	26'912	13'645	30'992	31%	51%	11	(Hôpital de Loëx)	13.9%
3	1002078	12	1971-1980	5'137	350	1	142'170	12'002	-	100%	8%	13	Rue de Bernex 248	13.9%
1	295071892	44	1971-1980	18'816	443	10	35'376	15'401	28'563	35%	44%	11		14.0%
5	295071662	44	1971-1980	18'728	407	8	75'855	30641	13'116	70%	40%	9	Rue de Bernex 342	0.0%
-	295112230	44	2006-2010	18'689	709	10	72'563	26621	17'045	61%	37%	9	Route de Soral 93	0.0%
	295030021	43	2001-2005	18'565	357	1	32'413	10'554	32'822	24%	33%	12	Boute de Pré-Marais 35	0.0%
1	1001903	43	1971-1980	18'552	667	i	35'366	11:338	321009	26%	32-1	11	Boute du Merleu 16	0.0%
1	1002072	43	1961-1970	18103	357	-	26'536	8'857	33'439	21%	332/	12	Chamin Sourclas T Lat 26	0.0%
	1002012	42	301-1010	10 103	331		20.000	0.001	00400	21/-	33/.	14	Criefinal Codonent Prez 20	0.0%

Ranking of buildings according to Solar cadaster

In green: best buildings covering 10% of municipal electricity demand

Contact and interviews with owners. Feasibility solar study.

tu	died buildings with	potential:
•	Hospital:	1000 kWp
•	Medical facility:	220 kWp
•	Farm:	34 kWp
•	Farm:	50 kWp
•	Aigues Vertes:	1000 kWp
	Collective housing:	120 kWp
,	Collective housing:	30 kWn

Total municipal electricity demand potentially covered at this stage: 8.5% on going process!

Application to Aigues Vertes

Foundation <u>Aigues Vertes</u> Care center for people with disabilities Village of 16 buildings

Extract from the Greater Geneva solar cadaster

Electricity network community

Medium voltage network => makes it easy to create a solar

Roof surface analysis for solar installations

14 eligible roofs

12

www.iea-shc.org

Results

Electricity consumption

lighting

devices

technical installations

Solar electricity production

Result of the technical-economic study (case of solar community for the entire site)

Installation da	ata	Energy balan	ce	Financial data		
Solar panel sur	face:	Electricity consumpt	ion:	Investissement brut:		
4'532	m ²	1'015	MWh/yr	910'430	CHF	
Installed capac	ity:	Selfconsumption rate	e:	Specific cost:		
997	kWp	34%		913	CHF/kWp	
Yearly product	ion:	Share injected into the	ne grid:	Subsidies (Swiss + Commune):		
935 MWh/yr		66%		274 940 + 20 000 = 294 940	CHF	
Capacity by are	ea:	Self-sufficiency rate:		Annuel profit:		
42	W/m ² built area	31%		153'826	CHF/yr	
109 W/m ² ground area		Share drawn from th	e grid:	ROI:		
		69%		4.3	years	

✓ Very high potential (~1 MWp)

- Medium-high selfconsumption rate (34%) \checkmark
- Good return on investment: 4.3 years \checkmark
- Economy of scale: ~900 CHF / kWp \checkmark

179

www.iea-shc.org

Next steps toward concretization

- Decision pending by the Foundation Board to move towards a solar installation on the entire site
 - several small installations vs unique and global installation
- Support for the solar project process, steps:
 - In situ surveys, ability of the roofs
 - Confirmation of potential and detailed analysis
 - Call for tenders from installers, awarding of contracts
 - Realization and monitoring of performance

www.iea-shc.or
Building level including facade analysis

Meyrin Cité

Study funded by:

Haute école du paysage, d'ingénierie et d'architecture de Genève

Peripheral district of Geneva (close to the CERN) Collective housing building neighborhood

Workflow: radiation and windows

Focus on a building groups

5 building entrances

3D view: irradiation outputs, 3D building model, orthophoto

	ROOF	South-West FACADE	South-East FACADE
Total area (m ²)	2'128	206	1'445
Windows area (m ²)	-	5	850
Productive area (m ²)*	1'770	157	427

*irradiation > 800 kWh/m²/yr & no window

Monthly irradiation balance on roof and south facade

Surface balance

Irradiance facade > roof October -> March

Energy balance with and without facade

× 1/		11	-
. /	2 annan		10
	· · ·	z * • 111	
	1	27	
	2	-	4
Proparation du potentiel solaire de la tôture 🖣	Vente Later 🗧	Autocor	
201 m ²	C Estimation	ons énergétiques et éco	nomiques
* /*/	Come	s énergétiques	
15/	194004000 ® 44,22 100	11980	Encontinue co, 💿 1 133 transmitter sp00,- en:
	fart in concentration proper @ 55,67%	-	
Dilan électrique mensuel (kWh)	Bornées éco	nomiques	
	burgissmant ()	Saturardinas (Fran de millionación 🌢
	74 804	16 224	748
	Annuttes	Temps de refose /	Gains annuels
	3 364 100 (m)	9,79 ans	6 997 of the

Solar Cadaster +Multi-building selection Facade

	Unit	ROOF only	ROOF + FACADE
PV panels area	m2	1'025	1'592
Power	kWp	226	339
Production	kWh/yr	214'555	286'746
Self-consumption	%	59	47
Investment	CHF	290'438	410'282
Unit price	CHF/kWp	1'285	1'210
Subsidies	CHF	68'940	101'710
Yearly incomes	CHF/yr	23'872	27'110
ROI	yr	6.8	7.8

Contribution of the facades: +30% in kWh Energy demand coverage in winter (Dec to Feb):

- 25% roof only -
- 30% roof + facade

MONTHLY BALANCE - ROOFS

MONTHLY BALANCE - ROOF + FACADE

www.iea-shc.org

Thank you for your attention

for any question: gilles.desthieux@hesge.ch

www.iea-shc.org

@IEASHC

IEA Solar Heating and Cooling Programme in (group 4230381)

Technology Collaboration Programme by lea

Sustainable and Climate Resilient Solar Neighborhoods

Silvia Croce

The presentation begins with a discussion of the use of urban surfaces in solar neighborhoods, which is followed by an introduction to a structured approach to support the definition of urban surface areas. This is followed by a case study in Bolzano, Italy, which investigates the application of this approach. The presentation concludes with a discussion about what can be learned from these examples and what future developments may hold.

Sustainable and climate resilient Solar Neighborhoods

Silvia Croce, PhD – Institute for Renewable Energy, Eurac Research (Italy) Seminar on Solar Neighborhoods, Calgary, 23 September 2022

Technology Collaboration Programme

shc.org

Outline

- Urban surface uses in Solar Neighborhoods 1.
- A structured approach to support the definition of urban surface uses 2.
- Application to case studies in Bolzano (Italy) 3.
- Lessons learned & Future developments 4.

Urban surface uses in Solar Neighborhoods

192

Urban surface uses Active solar energy systems

Energy systems for the building envelope

Energy systems for the ground surfaces

Energy systems for urban features

Passive solar heating

Passive solar cooling

Daylight control

Vegetation on ground

Green building solutions

Innovative technological solutions

Water bodies

Evaporative techniques

Water squares

196

Urban surface uses Urban agriculture

Ground-based agriculture

Building-integrated agriculture

Other forms

Highly reflective and emissive materials

Innovative materials with combined properties

Evaporative surfaces

198

Urban surface uses Traditional uses

Smart solutions

Kinetic / Responsive surfaces

Animation and illumination technologies

Potential synergies

Solar active energy systems integrated to other solutions

Bio-solar roofs

Multifunctional facades

Productive facades

Urban surface uses: which benefits?

The urban surfaces are a key resource to tackle issues related to urbanization and the correlated effects of climate change

SUSTAINABILITY

Renewable energy production

Fresh-water availability

Food provision

CLIMATE RESILIENCE

Urban climate management

Habitats & biodiversity preservation

Water management

Air quality amelioration

14

www.iea-shc.org

Surface Uses in Solar Neighborhoods

Definition of the most suitable surface uses to prevent conflicts and create synergies

IEA SHC TASK 63 | SOLAR NEIGHBORHOOD PLANNING

Technology Collaboration Programme DOM yo

NTERNATIONAL ENERGY AGENCY

A structured approach to support the definition of urban surface uses

A structured approach to support the definition of urban surface uses

Common approaches to urban surfaces use:

- **Sectorial** \rightarrow focused on single solutions and on pursuing single objectives ${}^{\bullet}$
- **Bi-dimensional** \rightarrow disregarding the three-dimensional complexity of the built environment

A structured approach to support urban planners and municipal decision makers in the definition of urban surface use patterns is developed and tested.

The proposed workflow addresses the design of urban surface uses by means of both quantitative and qualitative data, taking into consideration the complex and multi-disciplinary nature of the problem.

www.iea-shc.org

A structured approach to support the definition of urban surface uses **On-site monitoring**

High-resolution weather stations

Low-cost sensor nodes

A structured approach to support the definition of urban surface uses **Environmental tools**

Microclimate Analyses

ENVImet Grasshopper workflow

A structured approach to support the definition of urban surface uses Multi-criteria approach

Decisions on the use of urban surfaces require a method able to include various, often conflicting decision factors, as well as to consider the preferences of the stakeholders.

Case studies in Bolzano

Residential area

www.iea-shc.org

Sinfonia in Bolzano: major actions

The European project SINFONIA is a six-year initiative to deploy large-scale, integrated and scalable energy solutions in mid-sized European cities, which reached its finish in June 2020.

Credits: Alperia

Enhancement of district heating system: extension and optimization

Credits: Comune di Bolzano

Infrastructure for mobility and services: sensors, smart points and interactive totems

Credits: Eurac Research

Large scale refurbishment of social housing: 5 building complexes, > 40.000 m^2

www.iea-shc.org

Application of the methodology to the case study Bolzano

Geography and local climate conditions •

- Increase in the mean annual air temperature
- Summer heatwaves
- Urban Heat Island
- Intense precipitation phenomena \rightarrow flooding
- Sustainable Energy and Climate Action Plan (2020)
- Building Impact Reduction Index (RIE)

Urban governance and planning

Urban framework definition

Urban area characterisation

Site-specific objectives definition

Surface uses identification

Surface use scenarios creation and evaluation

Selection and integration of relevant surface uses

Urban area characterisation

Via Brescia-Palermo is one of the five residential areas in Bolzano involved in the Smart Cities European project Sinfonia.

The district includes two social housing building blocks refurbished in the Sinfonia framework, and the nearby residential buildings

Urban framework definition

Urban area characterisation

Site-specific objectives definition

Surface uses identification

Surface use scenarios creation and evaluation

Selection and integration of relevant surface uses

Site-specific objectives

- Resulting from: City-specific objectives
 - Results of urban area characterisation
 - **SINFONIA** project

Urban framework definition

Urban area characterisation

Site-specific objectives definition

Surface uses identification

Surface use scenarios creation and evaluation

Selection and integration of relevant surface uses

Surface uses identification

Based on the morphological and environmental characterisation, and the site-specific objectives, four different scenarios of surface use have been identified and tested.

Urban framework definition

213

Urban area characterisation

Site-specific objectives definition

Surface uses identification

Surface use scenarios creation and evaluation

Selection and integration of relevant surface uses

 $\Delta T_{air} = -0.10$ °C In Garden: increase up to + 0.30 °C + 7% vegetated fraction

Surface use scenarios: Green

Air temperature and PET distribution at 1 m a.g.l. Absolute difference between Baseline and simulated scenario www.iea-shc.org

www.iea-shc.org

Surface use scenarios: Energy systems

 $\Delta T_{air} = -0.03 \ ^{\circ}C$ 10[·]205 m² of building envelope surfaces suitable for the installation of solar systems Via Cagliari

Air temperature and PET distribution at 1 m a.g.l. Absolute difference between Baseline and simulated scenario

www.iea-shc.org

Scenarios' performance evaluation

Performance matrix: level of contribution of the surface use scenarios to site-specific objectives

		Surface use scenario					
	Site-specific objectives	Ø	\bigcirc		肇		
1	Urban climate regulation: Reduce summer overheating and UHI	0	0	٠	•		
1	Urban climate regulation: Reduce summer overheating and UHI during hottest hours		0	0	•		
1	Urban climate regulation: Improve human thermal comfort conditions	•			0		
1	Urban climate regulation: Improve human thermal comfort conditions during hottest hours	•	0		0		
2	Urban habitats and biodiversity preservation: Preserve vegetated areas and increase their surface	•	0	0	•		
3	Energy self-reliance: Produce renewable energy by active systems	0	0	0	•		
4	Urban water management: Increase the share of permeable surfaces	٠	0	0	0		
5	Air quality amelioration: Reduce pollutants and ghg emissions	•	0		0		

\odot

Urban framework definition

Urban area characterisation

Site-specific objectives definition

Surface uses identification

Surface use scenarios creation and evaluation

Selection and integration of relevant surface uses

Definition of the SURFACE USES PATTERN

1	Site-specific objectives		Surface use scenario				Selected of solution	
			\bigcirc		肇	integration of the		
1	Urban climate regulation: Reduce summer overheating and UHI	0	0	٠	•	U	se Pattern (S	
1	Urban climate regulation: Reduce summer overheating and UHI during hottest hours	•	•	0	•			
1	Urban climate regulation: Improve human thermal comfort conditions	•	•		•	1	Green sol	
1	Urban climate regulation: Improve human thermal comfort conditions during hottest hours	•	0		•	111		
2	Urban habitats and biodiversity preservation: Preserve vegetated areas and increase their surface	•	0	0		2	Energy sy	
3	Energy self-reliance: Produce renewable energy by active systems	0	0	0	•			
4	Urban water management: Increase the share of permeable surfaces	٠	0	0	0	3	Cool mate	
5	Air quality amelioration: Reduce pollutants and ghg emissions		0		•			

 $\odot \odot \odot$

ons for the Surface SUP)

utions

stems

erials

219 Urban framework definition Urban area characterisation Site-specific objectives definition Surface uses identification Surface use scenarios creation and evaluation Selection and integration of relevant surface uses Definition of the SURFACE USES PATTERN

www.iea-shc.org

- Air temperature is reduced in all hot spots Average decrement up to 0.12 °C \rightarrow
- **Improvement of human thermal comfort** PET average reduction 0.15 °C \rightarrow
- \rightarrow Production of renewable energy is guaranteed through solar active systems corresponding annual solar potential of 10.050 MWh/a
- → Increased RIE (4.55), and + 6% vegetated fraction

Air temperature and PET distribution at 1 m a.g.l. Absolute difference between Baseline and simulated scenario

Urban framework definition

Urban area characterisation

Site-specific objectives definition

Surface uses identification

Surface use scenarios creation and evaluation

Selection and integration of relevant surface uses

Definition of the SURFACE USES PATTERN

Vertical greening Vegetation on ground Solar green roof Solar active systems (PV) **Building-integrated PV** Cool grey asphalt Cool paint Water body

Urban framework definition

Urban area characterisation

Site-specific objectives definition

Surface uses identification

Surface use scenarios creation and evaluation

Selection and integration of relevant surface uses

Definition of the SURFACE USES PATTERN

Sinfonia refurbishment interventions Via Brescia-Cagliari

Via Brescia after refurbishment. Credits: Eurac Research

Sinfonia refurbishment interventions Via Palermo

Via Palermo after refurbishment. Credits: Eurac Research

Lessons learned & Future developments

Lessons learned

Urban surfaces uses can play a major role in the response and transformation toward climate resilient and sustainable cities.

- **City- and site-specific level characterisation** plays a **key role** in the definition of **responsive surface** ${}^{\bullet}$ uses strategies
- The **definition of surface uses** \rightarrow requires **clear objectives** \bullet
 - → is a **complex and multidisciplinary challenge**
 - → is a **site-specific challenge**
- There is **no single best surface use** that meets all the objectives
- Surface Use Pattern: variety is the key

What's coming next?

- JUS JRF
- Bolzano & Merano (Italy)
- Existing urban areas
- Goal: just transition toward carbon neutral cities
- **ARV**
 - ${\color{black}\bullet}$

Trento (Italy) New development Goal: climate positive

Thank you for your attention!

Silvia Croce Institute for Renewable - Eurac Research Silvia.croce@eurac.edu

eurac research

www.iea-shc.org

@IEASHC Y

IEA Solar Heating and Cooling Programme in (group 4230381)

Technology Collaboration Programme by lea

Solar-Driven Low-Carbon Communities: Drake Landing and Beyond

Lucio Mesquita

The presentation first introduces CanmetENERGY, the science and technology branch of Natural Resources Canada. This is followed by a discussion about solar district heating with seasonal borehole thermal storage. The presentation is focused on Drake Landing, a planned community in Okotoks, Alberta. While highlighting the merits of this solar community, the presentation also identifies some maintenance challenges and poses questions about the next steps in optimizing energy efficiency options for communities.

Natural Resources Canada Ressources naturelles Canada

SOLAR-PRIMEN LOW-CARBON COMMUNITIES: DRAKE LANDING AND BEYOND

Lucio Mesquita

Seminar on Solar Neighborhoods – University of Calgary-September 23, 2022

CanmetENERGY

Canada

CanmetENERGY is the science and technology branch of Natural Resources Canada and operates three labs across Canada with over 450 scientists, engineers and technicians

Solar District Heating with Seasonal BTES

Natural Resources Canada

Ressources naturelles Canada

235

Approximately 50% more tilted irradiation than Stockholm, close to Madrid levels.

http://globalsolaratlas.info. © 2019 The World Bank Source Global Solar Atlas 2.0 Solar resource data. Solargis

238-

http://globalsolaratlas.info.

WORLD BANK GROUP

Natural Resources Canada

*

Ressources naturelles Canada

Canada

52 two-storey single-family detached homes – 145 m² R2000

District heating loop (below grade) connects to homes in community

798 Single-Glazed Collectors - 2293 m² gross area

Natural Resources Canada

*

Natural Resources Canada

Ressources naturelles Canada

Natural Resources Canada

*

Ressources naturelles Canada

- R2000 performance level $(\approx 30\%$ better)
- built area.

Natural Resources Canada

Ressources naturelles Canada

• 145 m² avg. above grade

- ESP-r simulations for heating load calculations
- TRNSYS simulations for energy performance and design optimization

Natural Resources Canada

Ressources naturelles Canada

Monitoring Results

Natural Resources Canada

*

Natural Resources Canada

- ÷

Natural Resources * Canada

*

Ressources naturelles Canada

253

*

Ressources naturelles Canada

© Her Majesty the Queen in Right of Canada,

				-	
<u> </u>	_		_	-	
				-	
-					
L7 L6				-	
	TS-23-6	1	TS-23-7	-	
	rocont	ad b	, the M	C	al

- COP_{SS} (Heat consumed x solar fraction)/(electricity for solar + storage pumps) COP_{ap} (Heat consumed)/(electricity for all pumps) Pumps offset by PV •
- •

Ressources naturelles Canada

- Average SF for the last 5 years is 90%
- 100% in 2015/2016 Heating Season ☆☺

Year of Operation

Ressources naturelles Canada

-- Actual Historical Weather 35 45 40 50

A few maintenance challenges

- Collectors are not manufactured anymore
- Bellows o-ring's failure
- Open tank water quality issue
- Aging controls system

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2022

Canada

Ressources naturelles Natural Resources Canada

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2022

Natural Resources Ressources naturelles Canada Canada

Canada

Canada

260-

Conclusions for DLSC

- System has performed as expected and simulated
- Maintenance and operational cost challenges for small system – would co-op model help? Challenges due to low NG prices.
- Most maintenance costs from two design decisions: bellows with o'rings and vented water tank
- Pilots of this nature need funding for corrections after learning

tural Resources

Ressources naturelles Canada

Water to Water Heat **Pumps and Air Source Heat** Pump – Ball electric

PV

Efficiency vs Surface area / Volume ratio

Volume: 34,000 m³ Efficiency: 45%

Volume: 262,000 m³ Efficiency: 77%

Natural Resources Canada

Ressources naturelles Canada

263

Can we have a large Net-Zero Community with reasonable density?

What would be the best technology scenario?

atural Resources anada

Ressources naturelles Canada

Ressources naturelles Canada

25 UPH - 10 UPA

Total estimated roof-top available area 20,097 m² (216,322 ft²)

Natural Resources Canada

Ressources naturelles Canada

Canada

Electrical Plug + Lighting Loads

	Current Plug Load (kWh/day)
Detached	19
Town/Duplex	16
Apartments	14
TOTAL ANNUAL (MWh)	6,282
Required PV Area (m ²)	22,041
Can be reduced, but has	s impact on SH load

Natural Resources Canada

Ressources naturelles Canada

	Technology Scenario	DWH	Space Heating	Solar Tech	
1	BAU	Gas storage	NG furnace	-	
2	ST-BTES	Gas storage	DH	ST, PV	
3	ST-BTES	Loop WWHP	DH	ST, PV	
4	ST-BTES	Loop WWHP	DH	ST, PV	
5	PV-ASHP	Storage ASHP/Instant Elec.	ASHP	PV	
6	PV-GSHP	Storage ASHP/Instant Elec.	GSHP	PV+ Unglazed ST	
7	PV+CO ₂ ASHP+BTES	Loop WWHP	DH	PV	
8	HT-PVT-BTES	Loop WWHP	DH	HTPVT, PV	

*

Ressources naturelles Canada

Seasonal Thermal Storage	Space Heating back-up
-	-
BTES	Gas Boiler
BTES	W(G)SHP
BTES	Elec Boiler
-	-
-	_
BTES	CO ₂ -ASHP
BTES	WSHP

	Technology Scenario	DWH	Space Heating	Solar Tech	
1	BAU	Gas storage	NG furnace	-	
2	ST-BTES	Gas storage	DH	ST, PV	
3	ST-BTES	Loop WWHP	DH	ST, PV	
4	ST-BTES	Loop WWHP	DH	ST, PV	
5	PV-ASHP	Storage ASHP/Instant Elec.	ASHP	PV	
6	PV-GSHP	Storage ASHP/Instant Elec.	GSHP	PV+ Unglazed ST	
7	PV+CO ₂ ASHP+BTES	Loop WWHP	DH	PV	
8	HT-PVT-BTES	Loop WWHP	DH	HTPVT, PV	

*

Ressources naturelles Canada -269

Seasonal Thermal Storage	Space Heating back-up
-	-
BTES	Gas Boiler
BTES	W(G)SHP
BTES	Elec Boiler
-	-
-	_
BTES	CO ₂ -ASHP
BTES	WSHP

PVT collectors

Source: CanmetENERGY and and Naked Energy

*

Natural Resources Canada

Ressources naturelles Canada

Canada

	PV Area	Solar Thermal Area	TOTAL AREA FOR HEATING
	m ²	m ²	m ²
Base Case	35,134		35,134
ST+BTES+NGWH+PV	21,776	9,019	30,795
ST+BTES+HP+WWHPWH+PV	8,068	8,821	16,889
ST+BTES+EB+WWHPWH+PV	7,232	12,244	19,476
PV+ASHPWH+CCASHP	15,708	-	15,708
PV+ASHPWH+GSHP	11,060	6,378	17,438
PV+CO ₂ ASHP+BTES+WWHPWH	18,274	-	18,674

*

Canada

Natural Resources Ressources naturelles Canada

271

Conclusions

- Not enough roof area
- No significant difference between low-carbon options in terms of total required area
- Many questions remain

ural Resources inada

Ressources naturelles Canada

Next Steps

- Optimize energy efficiency options for buildings
- Optimize scenarios based on cost functions and optimal buildings design
- Evaluate technical potential for building integrated panels - BIPV/BIST/BIPVT
- Propose solutions for required area within the community

tural Resources anada

Ressources naturelles Canada

273

Next Steps

- Finalize PVT scenario
- Add cost functions (can two utilities scenario) compete with a single one?)
- Evaluate electrical peak demand (what is the value of self-consumption?)
- Add resiliency as parameter

ural Resources nada

Ressources naturelles Canada

Thank You!

Canada

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2022

lucio.mesquita@nrcan-rncan.gc.ca www.dlsc.ca

Canada

Ressources naturelles Natural Resources Canada

BIPV, Building-Grid Interaction and Dynamic Pricing of Electricity

Andreas Athienitis

The presentation begins with an introduction to major international trends in high performance buildings, including the adoption of net-zero energy, energy flexibility, and artificial intelligence to integrate and use building automation. It highlights the need for energy flexibility and identifies key research facilities and an overall approach to reaching these goals. The presentation looks at the Varennes Municipal Library (Quebec) as a case study. The presentation posits that using BIPV in buildings will become more cost-effective when integrated with energy storage, heat pumps, and electric vehicles.

BIPV, BUILDING-GRID INTERACTION AND DYNAMIC PRICING OF ELECTRICITY

Andreas Athienitis, Professor and Director, Concordia Centre for Zero Energy Building Studies, Montreal

IEA SHC Task 63 Seminar on Solar Neighborhoods, Calgary, September 23, 2022

Technology Collaboration Programme

Major international trends in high performance buildings

- Adoption of net-zero energy (ASHRAE) as a long term goal; nearly zero or net-zero ready in some cases until 2030. Carbon-neutral is another common goal.
- Measures to reduce/shift peak electricity demand from buildings, thus reducing the need to build new power plants; optimize interaction with smart grids; resilience to climate change; charging EV; energy flexibility in buildings;
- Steps to efficiently integrate new energy technologies such as building-integrated photovoltaics, thermal and electrical storage;
- Increased use of IoT technologies; massive amounts of data use of artificial intelligence (AI) techniques to integrate and efficiently use building automation and information systems.

NREL RSF

EcoTerra **BIPV/T STPV** Bottom-up shades

Concordia JMSB

Near net-zero house

Ecoterra house (Chen et al., 2010)

- 2-story residential building
- Roof BIPV/T:
 - o DHW heating
 - o Space heating
 - o Clothes dryer

o 2007 - 2011

JMSB building - Concordia

JMSB (Athienitis et al., 2010)

- High-rise institutional building
- UTC PV/T hybrid
- Façade BIPV/T

 Fresh air preheating heating

o 2009

Varennes Library

BIPV/T roof on Varennes library

- 2-story institutional building
- Roof BIPV/T

 Fresh air preheating heating

2011 - 2016
 ongoing for grid
 interaction

In the presentation will use the term BIPV/T to also include BAPV/T

Solar Decathlon entry

DPD (Rounis et al., 2018)

- 2-story residential building
- Row house typology
- Roof BIPV/T
 - o Air/water Heat Pump
 - Storage tank

Solar Decathlon
 China 2018

Background – need for energy flexibility

Buildings account for nearly 60% of electricity consumption in Québec - even more important during peak demand periods of the grid due to high consumption of electricity for space heating during extreme cold weather. During 2022 – extreme cold winter peak demand reached 40.51 GW,

- Active thermal storage in the form of radiant floor (TABS) can also provide more controllable heat storage to reduce peak demand (eg Varennes Library, Schools). Hot water tanks (e.g. LTE PVT system).
- Active high temperature thermal storage (e.g. ThermElect) can also be used as part of an HVAC system to provide peak load reduction and shifting (demand response, MPC).
- Battery/EV charging/discharging strategies for buildings.

Régulvar

It is important to be able to model, quantify and predict the **flexibility** that can be provided to the smart grid.

NSERC/Hydro-Québec Industrial Research Chair Workshop, July 12, 2022

Concordia

nstitut de recherche

High temperature thermal storage

School with geothermal heat pump, floor and air heating

Key research facilities and overall approach

- Utilize building physics and data from buildings such as those monitored by Hydro Québec and the *Experimentation Houses* for Building Energetics (EHBE) develop a methodology for generation of reduced order data driven grey-box RC models (ROMs);
- Validate key models in SSEC facility, EHBE and case studies;
- Reduced order models (ROMs) form the basis of model predictive control (MPC) to realize the predicted energy flexibility;
- Methodology for automatically generating and calibrating data driven models – applied to selected houses monitored by LTE
- Zone and building archetypes for flexibility and MPC **Position paper (IBPSA Building Simulation Journal)**
- Heuristic MPC planned/started for selected case studies/zones

EHBE facility (LTE)

SSEC lab

LTE – smart building PVT + storage + load

Varennes Library – NZEB with heat pump, active thermal storage and **BIPV/T**

Smart Solar Building concept – towards resilience/net zero

Optimal combination of solar and energy efficiency technologies and techniques provides different pathways to high performance and an annual net-zero energy balance **Solar energy:** electricity + daylight + heat

Key design variables: geometry – solar potential, thermal insulation, windows, BIPV, energy storage

Integrated approach to energy efficiency and passive design

Integrated design &

Solar optimization: requires optimal design of building form

Integrated smart solar building concept and grid integration – need for energy flexibility

Varennes Library, Canada's first net-zero energy Institutional building designed with our guidance (2016).

Currently studying/optimizing its grid interaction under NSERC/Hydro Quebec Industrial Research Chair

Building Energy Flexibility Index (BEFI)

A methodology for the definition and calculation of a dynamic as a state variable was developed.

The dynamic energy flexibility is defined as the capability for a building to:

- (a) reduce its electricity demand during a critical period for the grid; and
- (b) reduce or increase its electricity consumption anytime when needed for the grid.

BEFI in zone level:
$$\overline{BEFI}(t, Dt) = \frac{\int_{t}^{t+Dt} P_{\text{Ref}} dt - \int_{t}^{t+Dt} P_{\text{Flex}} dt}{Dt}$$

BEFI as percentage:

$$BEFI\% = \frac{\overline{P}_{\text{Ref}} - \overline{P}_{\text{Flex}}}{\overline{P}_{\text{Ref}}} \times 100$$

BEFI in Building level:
$$\overline{BEFI}_{Bui}$$

$$\overline{BEFI}_{\text{Building}} = \sum_{1}^{n} BEFI_{\text{Zone}}$$

Reduce electricity consumption during peak (high price) periods or sell to grid

Archetype zones and archetype buildings – RC models and BEFI

Classroom heated with convective (forced air) systems – 3rd order RC model and zone BEFI (school case study)

Thermal zone that includes radiant floor heating – 3rd – 4th order RC model and zone BEFI (school, Varennes Library)

BEFI for thermal storage: e.g. associated with liquid PV/T (e.g. LTE building retrofit)

3rd order RC model archetype for 2-storey houses such as EHBE (baseboard convective heating)

System BEFI from building zones or group of buildings calculated from subsystem BEFIs; applied to school case study

Horizon du Lac School - Building level Flexibility – BEFI system preliminary results

forecast.

identification

hours prediction

Considering that there are more than 2,600 schools in Québec, there is potential flexibility of about 208 MW peak load reduction in the morning, and 130 MW in the afternoon when needed by the grid.

50

25

0

-25

-50

-75

-100

uncertainties in both model formulation and weather

Uncertainty in modeling: ±15% for parameter

Uncertainty in weather forecast: ± 3% for one to three

Navid Morovat

Varennes Library – Canada's first institutional solar NZEB

Market is ready for such projects provided standardized **BIPV** products are developed Now modelling and optimizing operation and grid interaction under a NSERC Hydro Quebec Chair

We guided the energy design of the building

Officially opened May 2016

- BIPV/T)

- - excellence)

12

110 kW BIPV system (part

Geothermal system (30 ton) Radiant floor slab heating/cooling

EV car charging

Building received major awards (e.g. Canadian Consulting **Engineering Award of**

Varennes Municipal Library (2016) – Solar NZEB - DESIGN

South elevation – before final

First public institutional designed solar **NZEB** in Canada 110 kW BIPV (part BIPV/T), Geothermal Radiant heating/cooling, passive solar

Our team provided advice: choice and integration of technologies and early stage building form Design required several iterations - e.g. final choice of BIPV system required minor changes in roof design for full coverage. Roof slope close to 40 degrees to reduce snow accumulation.

PRESENTLY MONITORING PERFORMANCE & OPTIMIZING OPERATION

289

2017 sq.m. NZEB

Varennes Library – key features

Reaches net zero (primary energy factor for hydro about 1.4), consumption 60-70 kWh/m2/year

eothermal heat pumps tons; 105 kW) 8 boreholes

15

LIBRARY SYSTEMS: HEAT PUMP, THERMAL STORAGE, BIPV/T, EV

- temperature >25°C
- 15.9% STC

Energy flexibility modelling based on measured data

Custom BIPV/T, one inlet Fan activated for outlet air

Rated electrical efficiency:

Combined efficiency up to ~60% (thermal + electrical) 291

Illustration of different energy technologies that can be used to enhance flexibility in the operation of the Varennes library

Note: grid will buy up to a max. of 50 kW from building

Load duration curve: [top] net consumption, [middle] net production and [Bottom] the energy exported free to grid

Production and Consumption Mismatch: use predictive control to reduce peak demand during cold days e.g. measured data from sunny cold day Feb. 8, 2016

Smart NZEB can become tool of the grid through MPC

Quantify & Harness energy flexibility

Measured data as a reference scenario sunny cold day on February 2, 2018

How much can we reduce peak demand and consumption during peak periods for the grid?

Energy flexibility quantification and use: sunny cold day on February 2, 2018

To reduce consumption during peak periods of the grid and increase self consumption of PV electricity (outside peak periods)

Heuristic MPC – Varennes Library and Implementation

- Based on 6-10th order RC model (3rd to 5th order for each floor).
- Expected weather conditions are clustered into 9 possible scenario and each scenario, two sets of predictive setpoint profiles are developed with targets to maximize: i) Energy-efficiency and ii) **Energy flexibility**.
- Objective of the **energy-flexibility case:** shift load at two peak demand periods for the grid at Quebec based on weather forecast.

Considered weather scenarios are:

Ambient		Cloudiness	
Temperature			
	Sunny	Semi-cloudy	Cloudy
Very Cold	Scenario 1	Scenario 4	Scenario 7
Minimum: -20°C			
Maximum: -10°C			
Average: -15°C			
Cold	Scenario 2	Scenario 5	Scenario 8
Minimum: 10°C			
Maximum: 0°C			
Average: -5°C			
Mild	Scenario 3	Scenario 6	Scenario 9
Minimum: 0°C			
Maximum: 10°C			
Average: 5°C			

Preliminary version of MPC was implemented during this winter, initially when Library is closed.

Near-optimal heating setpoint profile on sunny day

Canadian case study IEA Annex 81

Will apply also to school building. 21

Heuristic Test at Varennes Library (23/12/21 to 03/01/22)

Conclusion

- Use of BIPV in buildings will become more cost-effective when integrated with energy storage (thermal mass, water tanks, batteries), heat pumps and electric vehicles.
- We can predictively store electricity (or convert to heat) when electricity prices are low and sell it to the grid when prices (and grid needs) are high.
- Already, a certain size of PV and battery storage (minimum sizes) are mandated in some locations for buildings above a certain size.
- The energy flexibility that can be provided by solar buildings to smart grids can be predicted and this information communicated to the grid.
- Model predictive control (MPC) is applied to activate the energy flexibility.

297

Liquid PVT system With water storage tank

LTE lab building, Hydro-Quebec

JMSB BIPV/T, Concordia

Contact for info:

Andreas Athienitis, Eng., Ph.D., FCAE, FIBPSA, FASHRAE NSERC/ Hydro-Québec Industrial Chair & Concordia Research Chair Director, Concordia Centre for Zero Energy Building Studies, Concordia University, Montreal, Quebec, Canada, H3G 1M8 Email: andreask.athienitis@concordia.ca

https://sites.google.com/view/researchchair-buildingenergy2/home https://www.concordia.ca/faculty/andreas-athienitis.html https://www.concordia.ca/research/zero-energy-building.html http:/www.solarbuildings.ca

www.iea-shc.org

🍠 @IEASHC

in IEA Solar Heating and Cooling Programme (group 4230381)

Technology Collaboration Programme

-299

Solar: A Key Ingredient of Holistic Approach to Sustainable Community Design - London, Ontario Case Studies Milfred Hammerbacher

The presentation opens with an introduction to S2E, a sustainable community/building/microgrid developer. This is followed by a definition of the term sustainable community and continues with a discussion of the two case studies, West 5 and EVE Park in London, Ontario. The presentation concludes with an emphasis on the importance of considering future generations, and the power that building sustainable communities has in fighting climate change.

SOLAR: A KEY INGREDIENT OF HOLISTIC APPROACH TO SUSTAINABLE COMMUNITY DESIGN LONDON, ONTARIO CASE STUDIES

Milfred Hammerbacher, CEO- S2E Technologies Inc. Seminar on Solar Neighborhoods, Calgary, Canada, September 23rd, 2022

Technology Collaboration Programme

S2E Background

A pure play Solar Company - Sustainable Community / Building / Microgrid Developer

- R&D solar cell technology
- Built and operated Solar panel manufacturing facility
- Developed several 100MW's of solar farms

- Co-Developer of Naya sustainable resort
- Developer of EVE Park NZE condo neighborhood
- Partner in Longos Grocery Store Microgrid

 Technology and creative partner behind West 5 NZE Community

Sustainability

Meeting our needs today without compromising the ability of the 7th generation of our descendants to meet their own needs. (c. Great Law of Iroquois Confederacy)

Sustainable Community Process

4

What is a Sustainable Community?

Sunset on West 5, London Ontario

- Integrated (work / live / play)
- Self-sufficient energy (net-zero + storage)
- Self-sufficient water (net-zero + storage)
- Durable materials / resilient design
- Recycling / zero-waste / closed-loop
- Local / organic food
- Active transportation / cycling / EV's
- Training / awareness programs
- Smart technologies
- Reduced CO₂ footprint

305

Our Solutions: Like an orchard of fruitful trees...

shc.org

Energy Tree

Case Study West 5, London, Ontario

- First fully inclusive Net Zero Energy Community in North America
 - 28.3 hectares
 - 2,000 living units
 - Over 32,000 to 46,000 m² of commercial and office space
- Master plan concept designed by s2e for Sifton Properties, acting as the sustainable partner in the development.
- Interconnected walkways, trails and open green spaces. A safe, walkable, pedestrian-centric designed for active lifestyle. •
- **Electricity Micro Grid** •
- Under continuous construction: \bullet
 - First commercial building in operations since 2015.
 - Second commercial building in operations since 2016.
 - Over 200 townhomes fully occupied
 - First 12 story mixed-use 150 unit residential and commercial building completed last summer
 - Retirement apartments Phase II under construction.
 - ~3 MW of PV installed

West 5

-309

West 5

Lessons Learned

SOLAR HEATING & COOLING PROGRAMME INTERNATIONAL ENERGY AGENCY

West 5 - Rules and Regulations

Municipal Regulation – All buildings must face major streets

West 5 - Rules and Regulations

Provincial Regulation – Classification of PV carports as Ground Mount Systems

West 5 - Architectural Compromise or Adaptation

Facades – Beauty / Efficiency / Cost / Constructability

Case Study EVE PARK London

Evolved Living

- 84 for-sale condominium homes
- Net Zero energy, 100% solar electric homes
- **Efficient Water Systems**
- Superior Indoor Air Quality
- Connection to West 5 Smart Grid for battery backup during power outage
- Automated Parking Tower Integration
- All-electric carshare fleet

1-Intro

EVE PARK

Solar Arrays - 580kw DC

EVE PARK

Lessons Learned

Always plan your projects for an impending pandemic disaster

EVE Park - Architectural Compromise or Adaptation

Solar Challenges

- Where is South Facing Roof?
- No parking lots?
- Facades very tough with shading and non-uniform direction facing

EVE PARK - NET METER ROOF TOP 317 PANELS @ 460 WATTS EACH: 146 KW 146 KW X 4 = 584 KW DC - 500 KW AC

EVE Park - Rules and Regulations

Leftovers from Provincial Government

- Short circuit current at the feeder substation is still a major limiter of amount of PV that can be installed in Ontario.
 - 500KW ceiling. Requires an expensive transfer trip on the feeder to go over that.

ľ	Ontario 🕅
	Newsroom
7	NEWS RELEASE
	Ontario Scraps the Green E Act
	Will protect consumers, restore municipal authority oppojects
	December 07, 2018

Energy, Northern Development and Mines

318

nergy

over energy

Summary

- Know and engage your stakeholders early (and there are many!) Don't forget the most important one; future generations
- Keep your goal always at the front Build sustainable communities to fight climate change
- PV should play an important role in almost all sustainable community design, but it should never be the singular focus of a design.
- Starting with low hanging fruit is always a good strategy.

319

Is the real obstacle innovative technology needs, or us (humans)? Humans love the Status QUO!

🥑 @IEASHC

in IEA Solar Heating and Cooling Programme (group 4230381)

Technology Collaboration Programme